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PREFACE

As a part of the 4th Biennium of the International Association for
Hydrological Sciences (IAHS) Decade for Prediction in Ungauged Basins
(PUB), Canada hosted an international PUB Workshop entitled “Putting
PUB into Practice” (P3) to discuss how the scientific results of the PUB
initiative could be used to reduce uncertainty in practical water resource
decision making. The goals of the 4th Biennium of PUB were to i) enhance
communication with the scientific community and dialogue with the
applications community, ii) include and analyze regional efforts and
perspectives, iii) maximize the predictive value of available data,
iv) incorporate process structure, variability and emergence into predictive
approaches, v) improve realism in conceptual approaches, vi) utilize and
assess new measurement and information technologies for basin inputs and
characterization, and vii) develop improved models that reflect recently
improved hydrological understanding. By addressing these goals it was
hoped that the P3 Workshop could help to address several challenges that
had become apparent during the PUB Decade, such as defining the
appropriate use of sparse gauge observations, integrating physically based
and conceptual methods in practice, and compensating for the limitations of
regionalization approaches in vast ungauged regions that characterize much
of the world. It was also anticipated that in addressing these goals PUB
could develop approaches that would be relevant for the full range of
hydroclimatic, ecological, and gauging situations in the world, for the
implications of non-stationarity for changing how streamflow
measurements are used for prediction, for prediction of multiple end points
from the full hydrological cycle, for sharing approaches with global
hydrological models and land surface schemes, and for estimating
parameters and model structures using new types of information and basin
classification schemes. With respect to the last point, it was hoped that better
understanding of process behaviour, patterns, and scale emergence could be
incorporated into innovative methods to parameterize physically based
models for PUB. 
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The P3 Workshop was held in the Canadian Rocky Mountain town of
Canmore, Alberta on three exquisitely sunny days in May, 2011 and was
attended by 75 energetic representatives who gathered from every inhabited
continent and brought a range of disciplines stretching beyond traditional
hydrology – from water resources engineering to atmospheric science – to the
workshop. Practitioners, decision makers, computer programmers, writers,
policy makers, students, and scientists attended the workshop to present,
debate, and synthesize information, providing a wide perspective to discussion
and transmission of information. The workshop was followed by a field trip
guided by local author and naturalist Robert Sandford onto the grand
Columbia Icefield – the frozen triple point headwater of three continental
rivers: the Columbia, Athabasca, and Saskatchewan that flow into the Pacific
Ocean, Arctic Ocean, and Hudson Bay respectively.
Those at the P3 Workshop examined a gradient from data-rich to data-poor
regions and considered the needs of various hydroclimatic regions, seeking to
share and consolidate between and across i) PUB themes and working groups,
ii) a variety of regional efforts and perspectives, iii) approaches that
maximized the predictive value of streamflow data and their use,
iv) approaches that maximized the use of physically based theory – process
structure, process variability, and their emergence into predictive approaches,
and v) the inclusion of new measurement and information technologies for
meteorological inputs, process verification, and catchment characterization.
There was much exploration of improved models and tools that reflect
improved hydrological understanding and their use in practice in a wide
variety of situations. What was particularly impressive about the workshop
were the open minded discussions towards addressing a difficult set of
questions and the commonality of opinion that new physical concepts, basin
conceptualizations, and technology were the key to moving forward with
improved predictions. There was great enthusiasm for exchange of technical
information between practitioners and scientists that bodes well for the future
of both groups.
The P3 Workshop was supported by IAHS and the Canadian Society for
Hydrological Sciences and organized by the Centre for Hydrology, University
of Saskatchewan, Saskatoon and the Western Watershed Research
Collaborative, Canmore. The workshop and its subsequent publication of this
monograph by the Canadian Water Resources Association on behalf of IAHS
were made possible by financial support from Alberta Innovates – Energy and

v

Preface



Environment Solutions, the Canada Excellence Research Chair in Water
Security and Global Institute for Water Security of the University of
Saskatchewan, the Improved Processes and Parameterization for Prediction in
Cold Regions (IP3 Network), Alberta Environment, Hoskin Scientific, and
Brewster Travel Canada. All are thanked for their generous support. Robert
Sandford, Joni Onclin, Michael Allchin, Xing Fang, and Paul Whitfield are
thanked for the special contribution to their workshop planning and logistics. 
As many will know or learn, producing a monograph is not as simple as
hosting a workshop, and the diligence and focus of Paul Whitfield and Chris
Spence as co-editors kept this task moving forward to completion. Paul’s
editorial and organizational skills were particularly appreciated in this
regard. Production of the volume involved the talented copy editing of
Maureen Whitfield and designing of Philip Gregory, along with the support
of the Canadian Water Resources Association for final publication in print
and as a web host for electronic publication.
Finally, I would like to thank Dr. Gordon Young, President of the International
Association of Hydrological Sciences at the time of this workshop, for his
support of PUB, this workshop and monograph, and his deep understanding
of the importance of better science and applications of science for the cold and
developing regions of the world.

John Pomeroy
Chair of the 4th Biennium of the IAHS Decade for PUB (2009-2011)
Director, Centre for Hydrology, University of Saskatchewan,
Saskatoon, SK, Canada
December 2013

vi

Putting Prediction in Ungauged Basins into Practice
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1.1 ABSTRACT

The International Association for Hydrological Sciences (IAHS) Prediction
in Ungauged Basins (PUB) initiative had the goal of decreasing the
uncertainty in hydrological prediction. The 4th biennium of the PUB decade
culminated in a 2011 workshop to summarize progress on sharing and
consolidating efforts to maximize the use of new knowledge and techniques
for prediction in ungauged basins in practice. The chapter summarizes the
presentations and discussions that took place at the workshop. These
followed four themes; maximizing the predictive value of available
information, improving process realism in physically based predictive
approaches, improving access to measurement and information technology
for prediction, and reducing uncertainty in the face of environmental
changes. It is hoped that this monograph provides a snapshot of the state of
the art in prediction that can be used as a benchmark for further advances.

1.2 RÉSUMÉ

L’initiative Décennie de prévisions en bassins non jaugés (PBNJ) de l’AISH
(Association internationale des sciences hydrologiques) avait pour but de
diminuer l’incertitude entourant les prévisions hydrologiques. La 4e période
biennale de la décennie de PBNJ a été couronnée par un atelier tenu en 2011,
lequel visait à résumer les progrès entourant le partage et la consolidation
des efforts en vue de maximiser l’utilisation des nouvelles connaissances et

1
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techniques pour la prévision en bassins non jaugés dans la pratique. Le
chapitre résume les présentations et les discussions qui ont eu lieu à l’atelier.
Celles-ci ont porté sur quatre thèmes; maximiser la valeur prédictive des
données, améliorer le réalisme du processus en ce qui concerne les
approches prédictives fondées sur des critères physiques, améliorer l’accès
aux mesures et aux technologies de l’information pour la prévision et
réduire l’incertitude face aux modifications ou à la dégradation de
l’environnement. Les intéressés espèrent que cette monographie présente un
instantané de l’état actuel des réalisations en matière de prévisions pouvant
servir de point de référence pour d’autres avancées. 

1.3 INTRODUCTION 

The overarching goal of the International Association for Hydrological
Sciences (IAHS) Prediction in Ungauged (PUB) Initiative was to reduce
uncertainty associated with prediction in ungauged basins. Prediction in
ungauged basins remains difficult in many parts of the world because of an
inadequate global gauging network for model calibration and regionalization
using many current methods. This problem is most acute in developing
countries and cold regions, which are among the most vulnerable regions to
watershed stressors, but it is an issue everywhere. Poor gauging adds
uncertainty to input data, model structure, and model parameterization. Non-
stationarity in climate, land cover, and anthropogenic influences means even
well gauged regions face uncertainty in prediction. The goals of the 4th
biennium (2009-2011) of the PUB Initiative were to share and consolidate
between and across PUB themes and working groups the variety of regional
efforts, perspectives, and approaches that maximize the predictive value of
streamflow data and their use. From May 10-14, 2011 in Canmore, Alberta,
Canada, a workshop was convened to summarize and report on the progress
made during the 4th biennium. The workshop consisted of invited theme
papers, contributed case study papers, and work group discussions that all
focused on how we presently predict within ungauged basins in areas where
data availability ranges from very rich to very poor. 
The core perspective of the workshop was evaluating how the availability of
data affects how we make predictions, and seeking opportunities to transfer
knowledge or skill or concepts amongst regions where data availability
differs greatly. The invited papers and case studies follow four themes:

2
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1. How to maximize the predictive value of available information.
2. How to improve process realism in physically based predictive

approaches.
3. How to access measurement and information technology for

prediction.
4. How to reduce uncertainty in the face of other environmental

changes.

Within the workshops the participants considered how these would apply
within data-rich, data-sparse, and data-poor watersheds and regions. This
monograph is a summary and expansion of the presentations and discussions
at the workshop; the expansion includes a sampling of PUB research and
methodologies that could be of use to practitioners.

1.4 HOW TO MAXIMIZE THE PREDICTIVE VALUE OF AVAILABLE
INFORMATION

The first suite of chapters provides different perspectives on how we are
presently using available information and tools to make predictions in
ungauged basins based on discussions at the workshop. Liu et al.
(Chapter 2) describes how the predictive value of available data in ungauged
basins is maximized in China. Based on the Chinese saying, “Even a clever
housewife cannot cook a meal without rice”, borrowing, substituting and
generating are the three basic methods of obtaining information to model a
basin of interest. That is specifically, extrapolating and/or interpolating
amongst the data from adjacent catchments, or obtaining the information by
simulation or experiments. These three approaches also apply to how
knowledge and tools derived from hydrological prediction research can be
applied to prediction in ungauged basins. Another approach to maximizing
the use of existing information is provided by Clarke and Buarque (Chapter
3) in their description of a case study in the Amazon basin. In the Amazon,
the estimation of precipitation is crucial for sound hydrological predictions
in both ungauged and gauged basins. They present a parametric
geostatistical model to estimate the Gumbel distribution of annual maximum
one-day rainfall at sites without rain gauges in the Amazon and Tocantins
basins of Brazil. Applying a model that is based upon all the available rain
gauges produces better precipitation estimates than other methods.

3

1 – Putting Prediction in Ungauged Basins into Practice



Pomeroy et al. (Chapter 4) discussed how process hydrology study results
from research basins could be used to generate physically based algorithms
and appropriate model structures that could be used to predict in ungauged
basins far away from the research basins. The application of deductive,
inductive, and abductive approaches to derive models using physical rules,
observed behavior, and borrowed hydrological relationships from similar
ecosystems was demonstrated in Canadian basins. The value of intensive
research basins as the source of information to be transferred to ungauged
basins was emphasized.
Danny Marks reported at the workshop on how information from data-rich
sites in mountain basins could be used to improve prediction at data-sparse
sites in similar environments. In the mountains of western North America,
nearly all the watersheds are ungauged. The hydrology of mountain basins is
complicated and sensitive to weather and climate, and sufficiently non-linear
that statistical rainfall/runoff or precipitation/runoff relationships are
unreliable. While there are 50 years of research developing the techniques of
hydrologic forecasting, Marks suggested that it is now time for hydrology
and hydrological prediction to be addressed as a science and that prediction
should be based on the understanding of meteorological, land surface, and
hydrological processes and their interactions. He suggested that we re-
evaluate our measurement strategy to better capture landscape gradients and
the end-members and our understanding of the distributions of hydro-
climatic parameters across complex landscapes. Marks also suggested that
we continue to invest in basic hydrologic and hydroclimatic process research
since the few existing outdoor laboratories provide high quality, long time
series data records, allow us to characterize processes and distributions, and
allow detailed uncertainty analysis. Only in a very few locations in the world
is this possible, making these sites incredibly valuable.

1.5 HOW TO IMPROVE PROCESS REALISM IN PHYSICALLY
BASED PREDICTIVE APPROACHES

The next suite of chapters addresses the importance of better understanding
and representing geophysical processes in predictive tools. A study
describing the use of physical principles to make predictions of floods in a
Russian ungauged basin is presented in Gelfan (Chapter 5). The approach
uses a data-rich small proxy-basin which is hydrologically similar to the
poorly gauged study basin. First, a physically based model of flood
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generation was developed in the proxy-basin, and then applied to the study
basin. Using modelled daily meteorological forcing, the hydrological model
generated a series of snowmelt flood hydrographs. The approach allows the
derivation of frequency distribution of flood volume without utilizing any
streamflow observations in the study basin. The proposed approach is
targeted for hydrological engineering practice and considered as a suitable
alternative to the traditional methods of flood risk assessment in ungauged
or poorly gauged basins. 
Jim McNamara reported to the workshop on the mutual reliance of
improving process information and improving predictions in ungauged
basins. For lumped models, statistical process representation is based upon
coarse states, sparse data, and a small computational requirement. For fully
distributed models, the physics based process representation relies on large
data sets and fine resolution, requiring extensive computer resources. Semi-
distributed and conceptual models fall in between lumped and distributed
models. McNamara also addressed the issues of models which are right for
the wrong reasons or wrong for the right reasons, reminding us that models
need to get the right answers for the right reasons (Kirchner, 2006).
McNamara discussed reductionism, an approach to understanding the nature
of complex things by the interaction of their parts, and its contribution to
PUB. He supported this reductionist approach in principle, suggesting that
Newton was indeed correct; that model failures result from poor
characterization of heterogeneous landscapes, and that hydrology is
inherently a local science because of large regional variations in landscape
variations; however, he also proposed that we could improve predictions
by [1] retaining the computational efficiency and philosophy of lumped
models, [2] observing how catchments create physically lumped
properties, and replacing physical lumping in models with physically
lumped properties. McNamara emphasized that storage is not commonly
measured, is frequently estimated as the residual of the water balance, and
is generally treated as a secondary model calibration target; yet improved
characterization of storage will lead to improved predictions. He suggested
that better understanding and description of the mechanisms responsible for
storage and retention of water in the watershed are needed to improve
predictions. Finally, he argued that true physically based models are a myth;
that hydrological models can only address hydrologically relevant process
and properties.

5
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Jeff McDonnell reported to the workshop his belief that accurate prediction
of headwater streamflow response implies adequate modelling of sources,
flowpaths, and residence time of water and solutes (Hewlett and Troendle,
1975). McDonnell explained that quantifying the watershed residence time
would improve model predictions. He demonstrated that for some basins
there was no relationship between basin area and residence time, while in
other basins there was a scaling of residence time and basin areas.
McDonnell also argued that we need to be “getting the right answers for the
right reasons” (Kirchner, 2006); developing models that are minimally
parameterized and therefore stand some chance of failing the tests to which
they are subjected. He demonstrated that defining residence time scaling
could lead to significant improvements in process realism, and in some cases
basin parameter transfer could be addressed within broad geological units.

1.6 HOW TO ACCESS MEASUREMENT AND INFORMATION
TECHNOLOGY FOR PREDICTION

The third section discusses the essential first step in modelling and prediction
of developing meteorological forcing data for input to hydrological models,
whether for gauged or ungauged basins (Garen, Chapter 6). These forcing
data may be from stations, and/or interpolations of real-time weather
forecasting. Garen (Chapter 6) describes how preparation of forcing data can
require significant database and software infrastructure, especially for real-
time forecasting. In ungauged basins, without streamflow measurements to
use as a check on simulation skill, it is especially critical to ensure that such
model forcings are accurately prepared.
Hydrological ensemble forecasting is increasingly used in scientific and in
operational modes (Renner and Werner, Chapter 7). Forecast ensembles are
created either by forcing a hydrological model with meteorological
ensemble forecast input or by running multiple hydrological models. While
the resulting spaghetti plots provide some feeling of future variability, they
are often difficult to interpret. Archived forecasts or hindcasts can be used
as the basis for probabilistic forecasts that represent the predictive
uncertainty of future flows and are thus useful for decision makers. The
forecast horizon in combination with basin characteristics such as size and
travel time, determine the contribution of different sources of uncertainty;
knowledge that is crucial when aiming to improve forecast accuracy in
either gauged or ungauged basins. 
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Vincent Fortin suggested to the workshop that there might soon be no such
thing as a truly ungauged basin. Geostationary satellites today provide
products such as rainfall estimates (PERSIANN), surface soil moisture
(SMOS), water surface altimetry (SWOT), and water storage anomalies
(GRACE). The availability of these types of data makes modelling the
atmosphere over any basin easier and provides measurements of state
variables (storage) and estimates of discharge of large rivers. Fortin described
how re-analysis products and modern data-assimilation systems ingest
massive amounts of data on the state of the atmosphere and provide
physically based gridded datasets which can then be used for hydrological
prediction. He also described products based upon the GEM atmospheric
model that Environment Canada makes available; [1] CaPA: a near real-time
precipitation analysis system, [2] MESH: a framework for surface and
hydrology prediction. He demonstrated how these products have been
applied to the prediction of water level changes in the Great Lakes basin.
Today, the only (proven) method to forecast the weather for more than a few
days is to forecast it everywhere by running a numerical weather prediction
model (NWP) from initial conditions estimated from observations of the
earth’s atmosphere, oceans, and land. There are limits to what we can afford
in terms of horizontal resolution, but GEM can zoom in on a region of
interest using a limited-area model (LAM). Fortin also described ensemble
forecasting where the aim is to represent uncertainty dynamically, based upon
different initial conditions, different numerical models, or different weather
forecasts. The differences between these model outputs should result in
differences in forecasts that should reflect the uncertainty in estimates of
initial conditions and in the limitations of our numerical models.

1.7 REDUCING UNCERTAINTY IN THE CONTEXT OF
ENVIRONMENTAL CHANGES

Reducing uncertainty within prediction in ungauged basins is addressed in
almost every PUB related publication and paper. In this workshop we asked
some authors to consider other perspectives on uncertainty where the context
of the prediction would contribute to the overall uncertainty. To start off this
section of the monograph, Wheater et al. (Chapter 8) addressed how
uncertainty could be reduced when land use change is creating non-
stationarity. Prediction of the effects of changing land use and land
management practices (i.e. catchment non-stationarity) for ungauged

7
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catchments is an issue of considerable practical importance for catchment
planning and management. The issues of land use non-stationarity raise
difficult methodological and management challenges. Wheater et al. describe
the development and application of a detailed physics based model with and
without local data, to represent field-scale effects of land management
practices. They suggest that addressing impacts of land management practice
can be done through mapping of land management effects on soil structure
and runoff processes, using regionalized indices of catchment response to
constrain conceptual model parameterizations for ungauged application and
upscaling the results to catchment scale using meta-models.
Regionalizing hydrological responses to ungauged catchments is a difficult
problem (Post, Chapter 9); however, typical practical application of the PUB
problem involves not just predicting the historical hydrological response of
a catchment, but also requires a prediction of the hydrological response of a
catchment into the future. Changes in catchment hydrological functioning
can be brought about through changes in land use and land management, or
through changes due to a changing climate. Post suggests that to solve this
latter issue, we must first understand the hydrological functioning of a
catchment under historical conditions; then we must improve the models
used to represent this hydrological functioning; and finally modify the
model structure to incorporate hydrological processes which are assumed
will change under a changing climate. Water managers, however, require
estimates of current and future water availability now in order to more
effectively manage water resources. Solutions to the problem of non-
stationarity need to be found, but assessments of water availability will
continue using whatever methods and models are available. 
Dornes (Chapter 10) addressed how we might combine both inductive and
deductive approaches in prediction. Dornes demonstrates using a data driven
modelling approach to represent landscape heterogeneity coupled with a
physics based approach for detailed snowmelt process descriptions. Using a
physically based hydrological land surface simulation, he demonstrated that
using distributed initial conditions of snowcover and incoming solar radiation
showed an appropriate representation of both the basin hydrographs and the
snowcover ablation; however, aggregated simulations were unable to describe
the dynamics of the basin streamflow when the runoff response was largely
governed by solar radiation, but when temperature was a key factor in the
onset of melt the differences were less. The modelling methodology
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capitalized on the strength of both modelling approaches, and appears to be an
effective method to reduce the size of the parameter sets and still retain
physical reality. Therefore it can be a useful approach when applying
physically based hydrological models in poorly or ungauged basins. 

1.8 CASE STUDY PAPERS

The next section of the monograph includes short case study papers based
upon some of the many posters that workshop participants presented on their
personal experiences with prediction in ungauged basins. Several of these
chapters address the issue of maximizing the predictive value of available
information. Hughes (Chapter 11) reports on how predictions in ungauged
basins are practiced at the national scale in South Africa. Minihane
(Chapter 12) describes the procedures used for estimating the mean monthly
discharges in the Lugenda River in northern Mozambique. Munro
(Chapter 13) describes the methodology used to generate a runoff record for
a recently ungauged glaciated watershed in the Canadian Rockies.
Collectively these provide classic examples of the diversity of methodologies
and scales of predicting in ungauged basins that exist. 
Others addressed specific issues of process realism in making predictions.
Keinzle (Chapter 14) reports on the procedure developed to estimate model
parameters in a mountainous region in Canada. Littlewood (Chapter 15)
describes how regionalization methods can be used to reduce the uncertainty
of predicted flows in ungauged basins in the United Kingdom.
Several authors contributed case studies that deal with new technologies or
newly available data types. Gutpta et al. (Chapter 16) consider the options
available for near real time predictions of streamflow in the Canadian
Prairies. Boyle et al. (Chapter 17) examined how SNODAS estimates of
snow water equivalence can improve model predictions in snow dominated
watersheds in the Rocky Mountains of the western United States. Kahl et al.
(Chapter 18) describe how information from satellite imagery can be
combined with an energy balance model to improve estimates of snow water
equivalence in the Sierra Nevada in the western United States. Armstrong et
al. (Chapter 19) show how prairie flooding, where runoff water fills glacial-
legacy depressional storage to rapidly increase the basin contributing area,
can be modelled using high resolution digital elevation models and a fill and
spill runoff algorithm. 
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1.9 SUMMARIES

During the workshop, participants were tasked with synthesizing how the
various approaches for prediction can be implemented in specific
hydroclimatic regions given the typical availability of meteorological and
catchment data and current understanding of hydrology. To ensure thorough
evaluation of existing and new predictive methods, participants were tasked
to examine a gradient of data-rich to data-poor contexts for that region. This
permitted the sharing of ideas and consolidation of knowledge between and
across the PUB Themes and Working Groups, and the variety of regional
efforts and perspectives represented by research conducted during the PUB
decade to date. Sessions summarized and synthesized the new approaches in
hydrometeorological measurement, remote sensing, land surface modelling,
process verification, catchment characterization and information
management that have characterized development of innovative models
during the PUB decade.
Whitfield et al. (Chapter 20) provide a summary and a synthesis of the
discussion that occurred in the work groups. The work groups agreed that
the lack of data with which to inform any type of predictive model, in
combination with the wide diversity of hydrological landscapes, makes
prediction in ungauged basins extraordinarily challenging. While the
research of the past decade has great potential to advance the practice of
hydrological prediction in ungauged basins, in particular thanks to the
development of gridded hydrometeorological products and research
activities in relatively data-rich research basins, the transfer to practice has
been more limited. The work groups identified the need for continued
detailed physical research, a watershed classification system and other tools
designed to enhance the development of transferable data, indices,
parameters, and indicators. A need was identified for standardized and
generalized physiographic information to be collected using the same set of
tools that are widely used by practicing hydrologists. Development and
maintenance of these types of tools require ongoing communication and
collaboration among all hydrologists. The work group summary includes
recommendations that address the following needs:

1. to maintain continuity, and validate new methods during
implementation.

2. to provide better interfaces to the complex datasets that are needed.
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3. for openness and transparency in all predictive approaches.
4. for common operating platforms. 
5. for better outreach to practitioners.

The legacy of the PUB decade includes significant advances in the
understanding of hydrological processes and development and testing, in
research settings, of revised or new methods for PUB. The challenge
remains to address the need to adopt standards and globally generalized
approaches for practitioners to make predictions in ungauged basins; the
participants in the workshop portion of this meeting have suggested
approaches that will address this situation. Three participants in the
workshop, Denis Hughes, Ross Woods, and Chris Spence, were tasked with
providing a synthesis and summary of the major findings of the workshop.
They suggest that the key themes to emerge were [1] the need to decrease
the gap between process understanding and model structure, [2] the need to
constrain uncertain model inputs and outputs, and [3] the need to address the
barriers that exist to adoption of new approaches by practitioners (Hughes
et al., Chapter 21).
It was clear from the workshop discussions that a major divide exists
between the hydrological research and water resource applications
communities. Some divide is inevitable, due to the translation time of
research results and techniques into accepted practical methods. It is hoped
that the workshop helped to narrow the divide amongst participants and that
this monograph will do the same for a wider audience. Still, there must be
diligence and efforts to continue to narrow the divide. Whilst research,
innovation and development must continue, hydrological researchers must
also ensure that advances are readily and rapidly available to those who
work to improve the resilience, sustainability, and security of water resource
systems. The successes of the PUB decade in improving the understanding
of hydrological processes, the increased availability of spatially distributed
hydrometeorological data, the development of more robust physically based
and statistical prediction tools, and the transfer of this information to the
water resources practitioner community should be built upon. The process
of researcher-practitioner engagement, information and technology transfer,
and the development of new and relevant scientific tools for prediction must
be an ongoing feature of hydrology and water resource science and
application.
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While the progress made during the PUB decade was critically evaluated,
the outcome provides guidance for continued innovation now that the PUB
decade has ended. The principal aim of the workshop was to make progress
towards a crystallization of the ‘state of the art’ of predicting in ungauged
basins. This “snapshot” could then support the further development of
techniques that would contribute directly to the practical solution of real-
world challenges in water resources management. It is hoped that this
monograph forms part of that progress. 
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2.1 ABSTRACT

Based on research results available from the literature and authors’
experiences in PUB (IAHS Decade for Predictions in Ungauged Basins), a
methodology framework on how to maximize the predictive value of
available data in ungauged basins is proposed. It includes three
methodological categories: “Borrowing”, “Substituting”, and “Generating”,
according to the logic of a Chinese saying: “Even a clever housewife cannot
cook a meal without rice.” The Borrowing method is defined as a method to
use other data by transplanting the data from a nearby region, or
extrapolating and/or interpolating among the data from the adjacent
catchments. The Substituting method is the method to obtain the necessary
data from the related information either from the same area by simulation
and assimilation or from another area by for example upscaling and/or
paired-catchment analysis. Generating is a method to obtain the data from
field or laboratory experiments. Based on these three methods, there are at
least three ways to promote the values of available data for the predictions
in ungauged basins, including the further study of hydrological prediction
theory, application of innovative and comprehensive methods for prediction,
and making use of advances in technology for applications in hydrological
prediction research. This methodology framework, summarized from a
Chinese lesson, can be a reference for maximizing the predictive value of
available data in ungauged basins.
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2.2 RÉSUMÉ

D’après les résultats de recherche disponibles dans la documentation et en
fonction des expériences des auteurs dans le cadre de l’initiative Décennie de
prévisions en bassins non jaugés (PBNJ) de l’AISH, un cadre méthodologique
est proposé quant à la manière de maximiser la valeur prédictive des données
disponibles dans les bassins non jaugés. Ce cadre englobe trois catégories
méthodologiques : « Emprunter », « Substituer » et « Générer », selon la
logique d’un dicton chinois : « Même la meilleure des ménagères ne peut pas,
si elle n’a pas de riz, préparer son repas ». La méthode de l’emprunt est définie
comme étant une méthode qui consiste à se servir d’autres données en
transposant les données d’une région à proximité, ou en extrapolant ou en
interpolant les données de bassins adjacents. La substitution est une méthode
qui consiste à obtenir les données nécessaires à même des données connexes
soit de la même région au moyen de la simulation et de l’assimilation, soit
d’une autre région, par exemple grâce à la mise à l’échelle supérieure ou au
moyen de l’analyse à base de bassins versants appariés. La génération est une
méthode qui consiste à obtenir des données à partir d’expériences sur le terrain
ou en laboratoire. Suivant ces trois méthodes, il existe au moins trois moyens
de promouvoir les valeurs des données disponibles pour les prévisions dans
les bassins non jaugés, y compris l’étude plus poussée de la théorie de la
prévision hydrologique, l’application de méthodes innovatrices et exhaustives
pour les prévisions et le recours aux percées technologiques pour les
applications de recherches sur les prévisions hydrologiques. Ce cadre
méthodologique, résumé à partir d’un précepte chinois, peut servir de
référence pour maximiser la valeur prédictive des données disponibles dans
les bassins non jaugés.

2.3 INTRODUCTION 

China is a country with climates ranging from arid to humid, with a
population that reached 1.35 billion in 2012. It is undergoing rapid social
change and economic growth, but maintains a low density of hydrological
gauges; lower than that recommended by the World Meteorological
Organization (Figure 2.1a) and in western China, for example the western
sub-basins of the Yellow River Basin even lower densities than the national
average (Figure 2.1b). China started to consider predictions in ungauged
basins as early as the 1950s (Liu et al., 2005). Many achievements have
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been made in hydrological prediction by overcoming the problems of lack
of data. Recent efforts in predicting in ungauged basins (PUB) has focused
on [1] process studies, modelling approaches and applications (Yang et al.,
2008), [2] hydrological modelling and integrated water resources
management in ungauged mountainous watersheds (Xu et al., 2009), and [3]
bringing new PUB theories into practice (Liu et al., 2010).
One of the important tasks of predicting in ungauged basins is to maximize the
predictive value of available data in ungauged basins. Here it is generalized to
include “borrowing”, “substituting”, and “generating” methods according to
the logic of a Chinese saying: “even a clever housewife cannot cook a meal
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Figure 2.1 a) The controlled area per station (km2) in China and other places in the world
provided by the World Meteorological Organization; b) The station network
density of each sub-catchment of the Yellow River Basin, the second largest river
in China (Liu et al., 2010), the basins are ordered by location from west to east.



without rice” (Liu et al., 2010). Borrowing is defined as a method to use other
data by transplanting the data from a nearby region or doing interpolation
and/or extrapolating among the data from the adjacent watersheds.
Substituting is the method to obtain the necessary data from the related
information either from the same area by simulation and/or assimilation or
from another area by for example upscaling and paired-catchment analysis,
both based upon similarity of geographic characteristics. Generating is a
method to obtain the data from field or laboratory experiments. While the
methodology framework presented here is based mainly on Chinese research
it serves as a representative framework of how to maximize the predictive
value of available data in ungauged basins in general.

2.4 THREE METHODS TO MAXIMIZE THE PREDICTIVE VALUE OF
AVAILABLE DATA IN UNGAUGED BASINS 

“Borrowing”

When faced with the difficulty of a shortage of rice, the first method the
clever house wife may think about is to borrow some food from neighbours.
This is also a good strategy for people beginning to get the data in ungauged
basins; it is a simple and sometimes very effective way to maximize the value
of available data from other basins for doing hydrological prediction in the
ungauged basin. This method can be divided into either direct borrowing or
indirect borrowing. When there are no data in the study basin, the first thing
usually is to look at the adjacent basins. If there is a gauged basin nearby
which is similar in geographic environment to the study basin, a good starting
place is to directly borrow the data from this basin. Direct borrowing is
simple, but very difficult as it is unusual to find two identical basins.
The more common form of borrowing is indirect borrowing. When there are
no data in the study basin, the search needs to be extended in other
directions. Using a rule of thumb that the closer the distance the closer the
geographic similarity, it is possible to get the information for the study basin
by synthesizing based on the information borrowed from nearby basins.
There are some cautions for using this rule; nearby basins do not always
have the same runoff generating mechanisms. Therefore before borrowing,
doing necessary hydrological field investigation is highly recommended.
Some common methods include interpolating, averaging,or inverse distance
weighting of the borrowed data. 
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Indirect borrowing was widely used in the 1950s and 1960s in China in the
classification and investigation to Chinese rivers (Guo and Tang, 1980;
Liu, 1986), and resulted in products such as [1] Hydrological Maps and
Hydrological Handbooks, [2] Storm-runoff Calculation Books (Yang, 1999;
Ministry of Water Resources of China, 2002), [3] Estimated unit hydrograph
(Li and Shen, 1996), and [4] Hydrological responses to climate change
(Guo et al., 2002). 

“Substituting”

Asecond method to maximize the predictive value of available data in ungauged
basins is substituting. Instead of borrowing some food from the neighbours,
the clever house wife may try her own means to find some substitutes to feed
her family. Finding appropriate substitutes is also an important way to
maximize the predictive value of available data in ungauged basins. There are
also two categories; from the study basin and from other basins. 
The substitution method using data from the study basin uses modelling to
generate the desired hydrological information for the ungauged basin. There
are many hydrological models used for prediction in China; the earliest
modelling used the rational model and the formula for the estimation of
small-watershed peak flow (The research group of small-watershed peak
flow estimation, 1978; Liu and Wang, 1980). Peak flow was estimated based
on land surface features such as basin area, slope, slope length, roughness,
and rainfall parameters (Figure 2.2a). Following the well-known Chinese
Xinanjiang model (Zhao, 1984), other models have been developed that
have different features, such as Hydro-Informatic Modelling System
(HIMS) (Liu et al., 2008), DTVGM model (Xia et al., 2005), and Vegetation
Interface Processes model (VIP) (Mo and Liu, 2001; Mo et al., 2012); each
of these used substitution of hydrological information. 

Liu et al. (2009a) explored the change pattern and trend of soil moisture (SM)
in the Wuding River basin, Loess Plateau, China based on the simulated long-
term SM data from 1956 to 2004 using the VIP model. In-situ SM
observations together with a remotely sensed SM dataset were used to
validate the model. Trend analysis showed that SM is decreasing, confirming
a drying of northern China (Liu et al., 2009a). The availability of long term
SM information for the basin supports early detection of desertification,
ecosystem recovery, and also improved soil and water management. 
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Parameters sometimes are not fixed values and may vary significantly at a
seasonal and inter-annual scale. It was shown that with observed eddy
covariance fluxes, data assimilation with an ensemble Kalman filter can
successfully retrieve the seasonal and inter-annual variations of parameters
related to photosynthesis and respiration of a boreal ecosystem site (Mo et
al., 2008), a good way to increase the modelling efficiency in the substitution.

Uncertainty analysis is very important for predicting in ungauged basins by
modelling. Hydrological simulation often pays insufficient attention to
uncertainty (Krzysztofowicz, 2001; Marshall et al., 2005; Sharma and
Chowdhury, 2011); however, Chinese authors have recently explored the
uncertainty of model inputs (Shi and Zhou, 1995; Liu and Zhang, 2011),
structure (Cai et al., 2000), and model parameters (Shu et al., 2000; Mo and
Beven, 2004).

The substituting method can also use data from other basins, for example,
by using upscaling and paired-catchment analysis. For the upscaling, gauged
catchments are modelled using calibration against measured flow data,
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Figure 2.2 Examples of tools to substitute of hydrological information for ungauged basins:
a) rational model to estimate peak flow; and, b) paired-catchment analysis to
explore the response of flow change to a bushfire (Liu et al., 2004).



whereas streamflow in the ungauged sub-catchments is simulated by a
disaggregation procedure deriving measured streamflow data from a gauged
catchment in which the ungauged sub-catchment may be nested. The
method is based on the assumption that the streamflow contribution from
each sub-catchment to the total catchment yield is proportional to a ratio of
the catchment area and its average slope (Schreider et al., 2002). Obviously
interflow and groundwater inputs depend more on flow paths than on the
catchment area, and so upscaled model results may not reach high model
prediction efficiencies when the ratio of surface runoff to total runoff is low. 
Paired-catchment analysis (Figure 2.2b) is used to explore the response of a
catchment to changes. When the control and treated parts of the catchment
are calibrated against each other using the data before and after the
treatment, the catchment response to the changes can be evaluated by
employing techniques of analysis such as double-mass curves, flow duration
curves, statistical regression, and other methods. There is a caution when
analyzing the responses by using paired-catchment analysis. For example,
for a catchment incurring a fire, the response might be greatly delayed
following the treatment (Liu et al., 2004). After the fire, new forest grows.
Usually regrowth young trees “drink” more water than the mature trees
before the fire. The height of the mature trees and consequent low leaf water
potential could be increasing the stomatal resistance to the diffusion of water
vapour; differences in transpiring biomass and energy exchange within the
canopy could also cause important differences between the water
consumption of mature and regrowth forests (Langford, 1976). Due to these
complicated influences, it may be hard to explain the results from paired-
catchment analysis. More capable of exploring the response perhaps is with
the combination between paired-catchment analysis and physically based
ecohydrological modelling (Vertessy, et al., 1998; Mo et al., 2012). There
are many documented studies and reviews of paired-catchment methods
(Liu et al., 2004; Vanclay, 2009; Bart, 2010); paired-catchment analysis is
both a field within comparative hydrology and within PUB (Falkenmark and
Chapman, 1989; Woo and Liu, 1994; Granger and Pomeroy, 1997;
Sivapalan et al., 2003; McDonnell and Woods, 2004; Blöschl and Merz,
2008; Wagener et al., 2010).

In China, the essential ideas of the substituting method from other basins
belong to the regional synthesis method. It is routinely used in designing storm-
floods by local water resources sectors (e.g., Yangtze Valley Planning Office,
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1982; Hydrology and Water Resources Survey Bureau of Liaoning Province,
1998) and is written into many post-graduate textbooks (e.g. Ye, 1991).

“Generating”

When the above methods have failed, a clever wife still does not give up.
She will go to the field, dig a hole, and plant a seed to generate the food for
her family. Correspondingly, observation is always a solution to the problem
of data scarcity, which is an indirect way to maximize the predictive value
of available data in ungauged basins. Observation includes field observation
and laboratory experiments.

China has been making field observations for 4000 years. For 2000 years,
the observations have included water levels, precipitation, velocities,
discharges and sediment; however the equipment was poor. Only in the
middle of the 19th Century, more advanced hydrological observation in
China began. At the end of 2011, there were 46,783 hydrometeorological
stations of various kinds in China, including 3,219 basic hydrological
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Figure 2.3 The early artificial rainfall-runoff laboratory in China.



stations, 1,523 water level stations, 19,082 precipitation stations, 19
evapotranspiration stations, 1,648 soil moisture stations, 7,750 water quality
stations, 13,489 groundwater stations, and 53 specific experimental stations.
Among them, there are 12,444 stations reporting hydrological information
routinely to their upper sectors and 1,005 stations issuing hydrological
predictions as required (Deng, 2012). 

In addition to these stations operated by the Ministry of Water Resources,
there are also other stations observing hydrological elements, including
China Meteorological Administration, Chinese Ecosystem Research
Network, Ministry of Environmental Protection, Ministry of Agriculture,
and others. Setting up these stations is a good example of generating. The
earlier the station was started, the more valuable the data are. With the social
development in the areas around the hydrological stations in recent years, it
has posed serious challenges for data from these gauges to reflect what the
hydrological world really is.
Setting up the stations to acquire the information usually takes money, time,
and effort to maintain. Doing laboratory experiments is another important
generating method. One of the earliest rainfall-runoff laboratories in China was
established in the Institute of Geography, Chinese Academy of Sciences in
Beijing in the 1960s, as the photo shown in Figure 2.3. Since then more such
laboratories have been established in Xi’an, Nanjing, and other cities in China.
Artificial rainfall-runoff experiments, conducted both in field and
laboratory, provided the parameters of runoff formation and runoff in areas
which had not been gauged: deserts, Qinghai-Tibet plateau, high-altitude
alpine areas, and the loess plateau (The research group of small-watershed
peak flow estimation, 1978). A general relationship amongst precipitation
(P), runoff (R), and evapotranspiration (ET) provides a general formula to
deduce storm peak runoff for ungauged basins (Liu, 1986). By doing field
experiments and interdisciplinary investigations, minimum ecological
instream flow requirements (environmental flows) were estimated for the
donating rivers for the Western Route South-to-North Water Transfer
project, which are ungauged, remote, and alpine (Liu et al., 2008a).
Additional new methods were proposed to estimate environmental flows
including the Hydraulic Radius method (Liu and Men, 2007), the
LiHaFloVa method (Liu et al., 2007), the Analytical Wetted Perimeter
method (Liu et al., 2009b), and the principle of scaling (Liu et al., 2008b). 
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2.5 WHAT IS BEYOND? 

Strengthen PUB theoretical study

To maximize the predictive value of available data for ungauged basins, it is
necessary to borrow, substitute, or generate information capitalizing upon
PUB-related research such as regional hydrology and comparative
hydrology; however, it is not simply streamflow but other hydrological
cycle components such as precipitation, soil moisture, snow, and
evapotranspiration that need to be adequately predicted for ungauged basins.
Further, this need not be just the quantity of these components, but also the
change patterns, to make full use of the predictive value of available data. 

Keep an eye on innovative and comprehensive methods and
increase use of advances in methods

With a denser observation network, remote sensing, and process-based
models, it is increasingly easier to draw isoline maps for hydrological
quantities. In addition to spatial runoff maps, China uses similar maps for
actual evapotranspiration, soil moisture, precipitation, radiation, sunshine
duration, aridity index, and other elements. These scientifically based
products are helpful for hydrological and water resources variability studies
in ungauged basins. 

Find more applications for PUB research results

With the PUB decade ending, how will these PUB research results be used
to address real problems? PUB needs to contribute to hydraulic engineering
design, and to improved risk assessment. The 2010 Zhouqu mudflow in
Gansu Province provides a reminder of the important role that prediction in
ungauged basins needs to fill.
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3.1 ABSTRACT

Precipitation estimation is crucial for hydrological prediction in ungauged
and gauged basins. This paper uses a parametric geostatistical model to
estimate the Gumbel distribution of annual maximum one-day rainfall at
sites without rain gauges in the Amazon and Tocantins basins of Brazil.
Analyses showed that the model y ~ N(D, 2I + 2R) – denoted the ‘full’
model – is acceptable for predicting the first two L-moments L1 and L2 of a
Gumbel distribution at an ungauged site. The predictor variables used in the
matrix D were estimates of L1 and L2 derived from two satellite product
datasets, CMORPH and TRMM 3B42 at spatial scale 0.25°×0.25°, with
three-hourly rainfalls accumulated to give annual maximum one-day rain.
Using rain gauge data from 366 sites in these basins with 15 or more years
of record between 1970 and 2005, Root Mean Square Errors (RMSEs) of
estimated L1 and L2 were calculated when the model was fitted to data from
the 365 sites remaining after each site was omitted in turn. For comparison,
RMSEs were calculated when the same ‘leave-one-out’ procedure was used
with four other interpolation procedures to obtain estimates of L1 and L2:
namely, (i) simply using the CMORPH as estimates; (ii) simply using the
TRMM 3B42 estimate; (iii) using a simple trend-surface estimate; and,
(iv) using a weighted mean value of L1 or L2, with inverse-squared-distances
as weights. In all cases, the full model described above gave much smaller
RMSEs, confirming the utility of the parametric geostatistical model for this
application.
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3.2 RÉSUMÉ

L’estimation des précipitations est cruciale pour les prévisions
hydrologiques dans les bassins jaugés et non jaugés. La présente
communication porte sur un modèle géostatistique paramétrique pour
estimer la loi de Gumbel relativement à une pluie journalière maximale
annuelle à des sites sans pluviomètre dans les bassins de l’Amazone et du
Tocantins au Brésil. Les analyses ont révélé que le modèle
y ~ N(D, 2I + 2R) – désigné comme étant le modèle « intégral » – est
acceptable pour la prédiction des deux premiers L-moments L1 et L2 de la loi
de Gumbel à un site non jaugé. Les variables explicatives utilisées dans la
matrice D consistaient en des estimations de L1 et de L2 dégagées de deux
ensembles de données tirées des produits satellites de précipitations
CMORPH et TRMM 3B42 à une échelle spatiale de 0,25°×0,25°, avec trois
précipitations horaires accumulées pour donner une pluie journalière
maximale annuelle. À l’aide des données de pluviomètre de 366 sites dans
ces bassins correspondant à 15 ans ou plus d’enregistrement entre 1970 et
2005, les écarts-types des valeurs L1 et L2 estimatives ont été calculés
lorsque le modèle a été ajusté aux données des 365 sites restants une fois que
chaque site a été omis tour à tour. À des fins de comparaison, les écarts-types
ont été calculés lorsque la même procédure (méthode du « leave-one-out »
qui consiste à extraire un seul élément) a été employée de concert avec
quatre autres procédures d’interpolation en vue d’obtenir des estimations de
L1 et de L2 : à savoir (i) simple utilisation de l’estimation du produit
CMORPH; (ii) simple utilisation de l’estimation du produit TRMM 3B42;
(iii) utilisation de l’estimation reposant sur une simple analyse par surfaces
de tendance et (iv) recours à une valeur moyenne pondérée de L1 ou de L2
faisant appel, comme facteur de pondération, à la loi de l’inverse du carré de
la distance. Dans tous les cas, le modèle intégral décrit ci-dessus a donné
lieu à des écarts-types beaucoup moindres, ce qui confirme l’utilité du
modèle géostatistique paramétrique pour cette application.

3.3 INTRODUCTION

When estimating characteristics of the water cycle at ungauged sites within
drainage basins, many candidate variables are commonly available for use
as predictors. One early example, showing how such candidate predictors
were identified for estimating flow characteristics at ungauged sites, was
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given in the Natural Environment Research Council’s Flood Study Report of
1975 (Natural Environment Research Council, 1975) and its successor the
UK Flood Estimation Handbook (Institute of Hydrology, 1999). Since that
time, many other such studies have been reported, and the number of
statistical procedures used for selecting and using predictors has increased
to include classification and regression trees, random forests, self-
organizing maps, neural networks, and radial basis functions (Taylor and
Silverman, 1993; Hastie et al., 2009; Breiman et al., 1984; Breiman, 2001).
There are also analytical procedures for generalized linear models (GLMs)
such as log-linear models and logistic regression (McCullagh and Nelder,
1989) and, in multivariate analyses, canonical variate analysis and cluster
analysis (e.g., Johnson and Wichern, 2007). Other predictors may come
from satellite data-products such as those for mapping terrain (e.g. the
Shuttle Radar Topographical Mission’s digital elevation model) and
vegetation (e.g. Normalized Difference Vegetation Index); for estimating
rainfall (rainfall products from the Tropical Rainfall Measuring Mission
(TRMM), and the Climate Prediction Center Morphing technique
(CMORPH)); and, for estimating other components of regional water and
energy balance (e.g. the Moderate Resolution Imaging Spectro-radiometer
(MODIS)). These are all possible sources of predictor variables.
Basic difficulties confronting an analyst wishing to infer the hydrological
characteristics at a location in a catchment without observations are
therefore (i) how to select the best predictor variables from those available;
(ii) how to select the predictive model that will best use them; and (iii) how
the uncertainty in the predictions should be evaluated. This paper discusses
such issues in terms of experience with a parametric geostatistical model
(Diggle et al., 1998, 2003; Diggle and Ribeiro, 2007) used as part of a wide-
ranging hydrological study of the Amazon and Tocantins basins of Brazil
which are poorly instrumented in comparison with Europe and North
America. Figure 3.1 shows the position of the study region within the South
American landmass.
This paper describes a procedure for estimating rainfall intensity-duration-
frequency (IDF) curves at sites without rainfall records. More specifically, and
for limitations of space, we consider here the estimation of the first two
L-moments, at ungauged sites, of annual maximum one-day rainfalls; a similar
procedure to that illustrated can be used for different rainfall durations (e.g.
Clarke and Buarque, in press), from which IDF curves can be constructed.
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A parametric geostatistical model (Diggle and Ribeiro, 2007) is used to
relate rainfall characteristics derived from ground-level data (rain gauges)
with those derived from satellite-derived data sets (TRMM 3B42 and
CMORPH). Spatial correlation is common in many hydrological variables
(Buarque et al., 2010); when calculating the precision of any quantities
estimated from hydrological data, the spatial correlation must be accounted
for. Geostatistical models have commonly been used for interpolation by
universal kriging with spatial coordinates as predictor variables (e.g.
Cressie, 1993). Their use with other predictors, and for selecting between
predictors, has been less widely explored. It is a straightforward extension
of parametric geostatistical models for use with non-Gaussian data, and in
Bayesian contexts (Diggle and Ribeiro, 2007); but here the emphasis is on
how they can improve estimates of rainfall characteristics extrapolated to
ungauged sites. Therefore, since the method transfers rainfall information
from sites where gauges exist to ungauged sites, it is directly relevant to the
aims of PUB.
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Figure 3.1 Location of the Brazilian Amazon-Tocantins basins within the South-American
landmass.



3.4 METHODS

Data

Data from 750 rain gauges in the region, an area about 4.7 million km2, were
provided by the Brazilian Water Agency (ANA), and 366 gauge sites were
selected, of which 209 sites were in the Brazilian Amazon and 157 in the
adjacent Tocantins basin (Figure 3.2). All 366 selected sites had 15 or more
years of complete data during the period 1970-2005 (unless otherwise
stated, ‘complete’ in this paper refers to the years in which rain gauge
readings were available for more than 80% of days in the year). Fragmented
records are a common problem in the statistical analysis of extreme values
of environmental variables, particularly in developing countries, but
procedures have been described which show how information about
extremes in fragmented records can be recovered (Jones, 1997; Svensson et
al., 2007; Clarke et al., 2009). In each ‘complete’ year of data, the annual
maximum one-day rainfall was abstracted, and L1 and L2 statistics were
calculated (the L1 statistic is, of course, simply the sample mean) using the
expressions given by Hosking and Wallis (1997).
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Figure 3.2 Locations and lengths of record of the 366 rain gauge sites in the Brazilian
Amazon-Tocantins basins.



Given the spatial coordinates of these 366 rain gauges, points of intersection
on the CMORPH (Joyce et al., 2004) and TRMM 3B42 (Huffman et al.,
2007) grids were then identified which were nearest to each rain gauge site.
CMORPH records were abstracted for the seven-year period 2003-2009,
and TRMM records for the twelve-year period 1998-2009. Three-hour
rainfalls given by both satellite data-products were totalled over 24-hour
periods that corresponded most nearly to the 24-hour period of rain gauge
totals, which are recorded at 07:00, local time, daily. For each selected
TRMM or CMORPH record, L1 and L2 statistics were calculated from the
annual maximum one-day rainfalls, over the 12 years of TRMM record and
the 7 years of CMORPH record.

Analytical procedure

Research on the region’s rainfall characteristics has shown that with records
from N rain gauge sites, the N×N variance-covariance matrix  can
commonly be represented by a three-parameter model of the form 

ii = var[yi] = 2 + 2 i = 1…N (1a)

ij = ji = cov[yi, yj] = 2 exp(- dij / )        (i ≠ j) (1b)

where yi, yj are the numerical values of the rainfall characteristic Y at sites i
and j with spatial coordinates xi, xj, dij =| xi - xj | is the distance separating
them, and 2, 2, and  are parameters. Thus  has the form 2R() + 2I,
where I is an N×N unit matrix and R (also N×N) has ones on its leading
diagonal and exp(- dij / ) as its (i,j)-th element. The variance-covariance
structure given in (1a) and (1b) corresponds to a semivariogram with
exponential form

V(d) = 2 + 2 {1 - exp (-d / )} (1c)

with ‘nugget’ variance 2 and ‘sill’ variance 2 + 2 (Diggle and Ribeiro,
2007).
Having specified the variance-covariance matrix for the rainfall
characteristic of interest (L1 or L2, in the present context), its value yi
recorded at a rain gauge site is related to the value Ci and Ti of that rainfall
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characteristic found from the CMORPH and TRMM records, for the grid-
point nearest to the rain gauge site. Thus the predictive model estimating the
desired rainfall characteristic y at an ungauged site (site k say) using
CMORPH and TRMM as predictor variables, is

yk = 0 + 1 Ck + 2 Tk + k. (2)

When the observed yi are mean values over the period of record, it is
reasonable to assume that they are approximately normally distributed. In
matrix form, the model is then:

Y ~ N(D, 2R() + 2I) (3)

where D is an N×3 matrix with ones in its first column, and the values of Ck
and Tk in its second and third columns;  = [0 1 2]T; and Y is the N×1
vector of the rainfall characteristic (L1 or L2). For more or fewer predictor
variables, dimensions of the matrix D and the vector  are modified
accordingly. The assumption of Normality can be relaxed through the use of
Generalised Linear Models (GLMs) in which the predicted variable y has
any distribution belonging to the exponential family (McCullagh and
Nelder, 1989) which includes the binomial, exponential, gamma, and
inverse gamma distributions, amongst others. GLMs can be fitted with the
geoRglm package (Diggle and Ribeiro, 2007).
Diggle and Ribeiro (2007) describe a straightforward way of estimating the
parameters , 2,  and 2 by maximum likelihood. Since

V = R() + v2I (4)

where v2 = 2/2, then for given V the log-likelihood function is maximized
at 

(4a)

and

(4b))}.({)}({)(
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Substituting (4a) and (4b) in the log-likelihood function gives log L (v2, ),
where

log L (v2, ) = - (0.5){N log (2) + N log [ ] + log |V| + N} (5)

which is maximized with respect to v and , followed by back-substitution
to give and . Maximization of (5) was achieved by the Nelder-Mead
procedure, with four convergence criteria: the maximum number of
iterations and the maximum number of function (log-likelihood) evaluations
(both of which were required to be less than 400 for convergence); the
tolerance allowed for each parameter, and the tolerance allowed for
evaluating (5), the latter two criteria were both required to be less than 10-4.
Given estimates of the first two L-moments L1 and L2, Gumbel distributions
can be fitted in which the position and dispersion parameters  and  are
estimated as  = L2/log 2,  = L1 - 0.5772 (Hosking and Wallis, 1997). To
estimate L1 and L2 at sites without rain gauges, estimates of L1 and L2
calculated from rain gauge records were combined with estimates of L1 and L2
derived from two satellite product datasets TRMM 3B42, and CMORPH, both
at grid-spacing 0.25°×0.25°, but with different periods of record. These satellite
products were selected because they have been extensively used in the rainfall-
runoff model MGB-IPH (Collischonn et al., 2007) applied to many South
American watersheds, and the Amazon and Tocantins basins in particular
(Collischonn et al., 2008; Paiva, 2009; Paiva et al., 2011; 2012; 2013a; 2013b).
Values of the first L-moment L1, calculated at 5983 grid points within the study
area for the period of their common record 2003-2009 are shown in the Figures
3.3(a) and 3.3(b) for TRMM 3B42 and CMORPH, respectively; the shades of
grey classify the L1 values according to the class intervals shown in the figure
legends (with white lowest, black highest). Although the quantiles shown in
Table 3.1 are fairly similar for TRMM and for CMORPH, the spatial
distribution of L1 is very different between the two datasets. It is the differences
between predictors of L1 that the predictive model (given in its matrix form by
equation 3 above) aims to exploit. When L1 is calculated (a) from the full
available period of TRMM, 1998-2009, (b) from CMORPH data for the period
2003-2009, and (c) for the 15 (or more) complete years of record calculated
from rain gauge data for the period 1970-2005 at the 366 sites used in the
present work, the summary statistics for L1 are in Table 3.2. The correlations
between the L1’s from (a), (b), and (c) are presented in Table 3.3.

^
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Figure 3.3 L-Moment L1, the mean annual maximum one-day rainfall (mm) for the period
2003-2009, at 5983 grid points within the study area, calculated from the
(a) TRMM 3B42 dataset, and (b) the CMORPH dataset.



When the CMORPH and TRMM data are used to derive the predictor
variables C and T in (2), it is not necessary for them to be calculated from
the same period of record as the variables L1 and L2 obtained from rain
gauge data. It is not even necessary for the annual maxima from which the
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Min Q1 Median Q3 Max

TRMM 51.3 84.9 93.2 102.3 167.6

CMORPH 44.2 86.7 95.6 105.5 156.1

Table 3.1 Summary statistics (mm) for means, over the period 2003-2009, of annual
maximum one-day rainfalls at 5983 grid points lying within the Brazilian Amazon
and Tocantins basins, derived from TRMM and CMORPH datasets. Q1 and Q3
are the first and third quartile. Units are in mm. (Mean for TRMM:  94.24 mm;
mean for CMORPH:  96.41 mm).

Min Q1 Median Q3 Max

TRMM 55.2 81.1 91.6 102.1 145.9

CMORPH

Rain Gauges

54.0

61.8

81.6

84.4

91.8

91.8

101.6

98.0

135.5

120.2

Table 3.2 Summary statistics for one-day rainfall L1 at 366 rain gauge sites in the Brazilian
Amazon-Tocantins basin, over 15 years minimum record between 1970-2005,
together with 366 TRMM L1 values for 1998-2009, and 366 CMORPH L1 values
for 2003-2009, at grid points nearest to the gauge sites. Q1 and Q3 are the first
and third quartile. Units are in mm. (Mean for TRMM: 92.5 mm; mean for
CMORPH: 91.4 mm; mean for gauges: 91.4 mm).

TRMM CMORPH Rain Gauges

TRMM 1 0.482 0.348

CMORPH

Rain Gauges

0.482

0.348

1

0.334

0.334

1

Table 3.3 Correlations between L1 values of CMORPH, rain gauge and TRMM, for the
periods defined in Table 3.2(a).



predictor variables C and T are calculated to be accumulated over the same
24-hour periods that are used when calculating the response variables L1 and
L2 from rain gauge data (although it is likely that the variables to be
predicted, L1, L2, will be more closely correlated with the predictor variables
C and T when they are). It is the information content in the predictor
variables CMORPH and TRMM that is important. 
The Gumbel distribution was selected only as a ‘demonstration of concept’
and the L-moments could be used to obtain parameters of any other
distribution. There is no reason why the first three L-moments should not
each be modelled using (2) above for the purpose of obtaining a three-
parameter GEV, or any other distribution, at an ungauged site. The question
might be asked, however, ‘why use the model in (2) to obtain estimates of
L1 and L2 at an ungauged site, instead of predicting maximum likelihood
estimates of the Gumbel parameters  and  for the site directly?’ The
answer to this is two-fold: (a) the first L-moment is just the arithmetic mean
of the annual maximum one-day rainfalls at a site, and therefore has a very
simple and direct interpretation, whilst the maximum likelihood estimate of
 is not directly equivalent (although its numerical value will be similar); (b)
the maximum likelihood iterative calculation yielding estimates of  and 
at a gauged site may not always converge, whereas calculation of L1 and L2
does not involve convergence of an iterative procedure. 

3.5 RESULTS

The results from using the model are described in two parts, dealing with the
estimation at ungauged sites of L1 and L2 respectively.

Extrapolation of L1 (i.e. mean annual maximum one-day rainfall)

As a first step, the model was fitted without using any predictors, so that
(3) became simply Y ~ N(0, 2R() + 2I), where Y is the (366×1) vector of
L1 values obtained from rain gauge data. The four model parameters 0, 2,
2,  were estimated as 91.09, 57.85, 47.35, and 0.4785 respectively, with
which the maximized log likelihood was log L = -1333.38. This value of log
L is the measure against which the utility of predictors can be assessed; a
model with one parameter added for each and every observation in Y would
give a perfect fit (just as a quadratic curve fitted to three points will give a
perfect fit). Fitting any alternative model having more parameters than the
0, 2, 2,  given above will always increase log L, and statistical analysis
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(specifically, a likelihood ratio test: e.g. Johnson and Wichern, 2007) will
show whether the increase is sufficiently large to justify inclusion of the
additional parameters, thus giving a more complex model. When TRMM is
included in the model as a predictor, the value of log L increases from -
1333.38 to -1324.64: an increase of 8.74. The likelihood ratio test showed
whether this increase in log L is statistically significant; since one additional
parameter 1 has been included in the model (3), the difference 8.74 was
compared with tabulated values of the 2 distribution with one degree of
freedom (1 d.f.). This table shows that to be statistically significant at the 5%
and 1% levels, the increase in log L should exceed 3.841 and 6.635
respectively, so that the utility of the TRMM estimate of L1, as a predictor
of rain gauge L1, is established. When CMORPH is included in the model as
the only predictor, the value of log L also increases, but the increase of 4.53
is smaller than that given by using only TRMM as predictor; however, the
increase is statistically significant at the 5% level. Thus, the use of TRMM
alone in the model as predictor will provide a better estimate of rain gauge
L1 than when CMORPH alone is used, since the increase in log L has greater
statistical significance.
If CMORPH is added to a model which already has TRMM as one predictor,
the value of log L increases to -1323.51, so that the increase – relative to that
given by the use of TRMM alone is only 1.13. TRMM therefore contributes
most to any prediction, as shown above; however, inclusion of both
predictors increases log L by -1223.51 + 1333.38 = 9.87, significant at the 1%
level (for 2 d.f., the tabulated 2 value is 9.21) so both are retained. Values
calculated for the model parameters, and for log L, are shown in Table 3.3.
There are gradients in mean annual rainfall in both west-east and north-
south directions (Clarke and Buarque, in press); so one question is whether
there is value to be gained by using latitude and longitude as predictors to
estimate L1 of annual maximum one-day rainfall at an ungauged site. To
answer this question, the model was fitted using both latitude and longitude
as predictors. This calculation is then equivalent to universal kriging with an
exponential spatial correlation function (or, equivalently, an exponential
semivariogram) fitted by maximum likelihood. The log likelihood then
becomes -1332.60, only very slightly greater than the log L = -1333.28
found for the “null” model (Table 3.3). It is concluded that latitude and
longitude as spatial predictors are less useful as predictors of L1 than the
TRMM and CMORPH estimates of L1.

34

Putting Prediction in Ungauged Basins into Practice Clarke and Buarque



Extrapolation of L-moment dispersion L2

The correlations between L2 calculated from rain gauge data, and L2
calculated from TRMM and CMORPH data, are smaller than those for L1;
the correlation between CMORPH L2 and gauge L2 is 0.093, between
TRMM L2 and rain gauge L2 is 0.121, and between CMORPH L2 and
TRMM L2 is 0.275. For the “null” model, without any predictors, the value
of log L was -978.32; when L2 calculated from TRMM, and L2 calculated
from CMORPH, were included as predictors of rain gauge L2, the value of
log L increased to -975.14. With these two parameters included the increase
in log L is compared with the 2 distribution for 2 d.f. (5.991, p<0.05). Thus
the increase of 3.18 in log L shows that TRMM and CMORPH estimates of
L2 are not useful for predicting rain gauge L2. Therefore only the null model
L2 ~ N(0, 2R() + 2I) was used, for which estimates of the four
parameters 0, 2, 2, and  were 14.09, 10.54, 1.766, and 2.916. 
The next section describes how the models for L1 and L2 performed when
used for extrapolation to sites without rain gauge records, using a “leave-
one-site-out” procedure. 

Model performance when predicting L-moment position L1 at
ungauged sites: assessment using a “leave-one-site-out” procedure

A “leave-one-site-out” procedure was used to find out how well the model
performed when used to predict L1 at any site without a rain gauge. Each one
of the 366 sites with a rain gauge record was omitted in turn; data from the
remaining 365 sites were used to fit the model given by (3) above
(i.e. estimate the parameters , 2, 2, ). The model was then used to predict
the value of L1 at the omitted site. Repeating this procedure for each of the
366 sites gave 366 predicted values of L1, which were compared with the
values of L1 derived from the rain gauge records at those sites.
To obtain the predicted value at each site for which the L1 values from
TRMM and CMORPH are known, the “trend” value was obtained by
substituting them in , where the quantities with
“hats” were estimated as shown in equations (4) and (5) above. It was then
necessary to predict the value of the residual component e at the omitted site,
and the procedure for this has been described, for example, by Cressie
(1993). Dropping the ‘hats’ from the calculated residuals to simplify

TRMMCMORPH LL
,12

^

,11

^

0

^
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presentation, the required residual  was T, where the dimensions of  and
 are 365×1 and T is given by

T = {c + 1 [1 - 1TS-1c] / 1TS-11}T S-1 (7)

where S is the 365×365 matrix with 2+ 2 on its leading diagonal and 2

exp (-dij / ) in its off-diagonal elements (calculated from the remaining 365
rain gauges after one had been omitted); c is the 365×1 vector with elements
2 exp (-d0j / ), where the suffix zero refers to the omitted rain gauge site;
and 1 is a 365×1 vector of ones. Thus using (7), the residual  was estimated
for the omitted site; it was then added to 0 + 1 L1, CMORPH + 2 L1, TRMM
(where, for convenience, the “hats” have been omitted) to give the “full”
estimate. The estimates 0 + 1 L1, CMORPH + 2 L1, TRMM, without the
estimated residual added, are termed the “trend” estimate; if the predictors
had been latitude and longitude instead of L1, CMORPH and L1, TRMM, the
predicted value of L1 would be that given by fitting a planar trend surface to
the 366 rain gauge coordinates.
Having predicted the value of L1 at each omitted site using the “full” model,
a Root Mean Square Error (RMSE) was calculated from the differences
between predicted and “observed” values of L1 (“observed” in the sense that
they were calculated from the rain gauge data at the omitted site). For
purposes of comparison, the following were also calculated: (i) the RMSE
when the L1 obtained from CMORPH data was simply taken as an estimate
of the rain gauge L1 at each of the 366 sites, denoted by
RMSEL1,CMORPH; (ii) the same, but with L1, TRMM instead of L1, CMORPH,
giving RMSEL1, TRMM; (iii) the RMSE calculated when the “trend” estimate
0 + 1 L1, CMORPH + 2 L1, TRMM was taken as an estimate of L1, denoted by
RMSEL1, Trend; and (iv) the RMSE obtained when each omitted L1 was
estimated by a weighted mean of the remaining 365 L1’s, using squared
inverse distances as weights, denoted by RMSEL1, Weighted. The values of the
five RMSEs are shown in the first two columns of Table 3.4. 
Columns 1 & 2 of Table 3.4 shows that simple substitution of CMORPH-
and TRMM-derived values of L1, as estimates of the L1 that a rain gauge
would have given if one had been present, had the largest RMSEs. The
weighted-mean estimate, using only the L1 values at the 365 rain gauge sites
that were not omitted, performed slightly better than the “trend” estimate
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0 + 1 L1, CMORPH + 2 L1, TRMM. The best estimation procedure, in terms of
giving the smallest RMSE, was the “full” model in which a predicted
residual was added to the “trend” estimate.
Model performance when predicting L-moment dispersion L2 at ungauged
sites: assessment using a “leave-one-site-out” procedure
A similar procedure to that described for L1 was also used to predict the
L-moment dispersion L2 at an omitted site, when each of the 366 sites was
omitted in turn; calculation of the five RMSEs followed the same procedure,
and the right-hand side of Table 3.5 shows RMSEL2, TRMM, RMSEL2, CMORPH,
RMSEL2, Trend, RMSEL2, Weighted and RMSEL2, Full. These broadly follow the same
pattern as for L1; the “full” model shows a particularly good performance. 

3.6 DISCUSSION

The use of L1 and L2 calculated from CMORPH and TRMM to predict rain
gauge derived L1 and L2 gave the poorest predictions; predictions given by
“trend” (0 + 1 L1, CMORPH + 2 L1, TRMM in the case of L1; 0 in the case of
L2) performed less well than weighted-mean predictions, although the
difference in performance was not large. The best predictions for both of L1
and L2 were those given by the “full” models. 
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“Null” ModelParameter TRMM
alone

CMORPH
alone

TRMM and
CMORPH

�0

�2

91.09

57.84

75.96

58.87

78.12

61.09

71.44

60.12

�1

�2

�2

�

log L

–

47.35

–

0.478

-1333.38

0.165

34.93

–

0.536

-1324.64

0.142

32.89

–

0.578

-1328.85

0.138 (T)

29.86

0.077 (C)

0.606

-1323.51

Table 3.4 Estimates of parameters , 2, 2,  in the model L1 ~ N(D, 2R() + 2I),
and the maximized log likelihood log L, when using: no predictors (“Null” model);
only TRMM (T); only CMORPH (C); and, both TRMM and CMORPH (T-C) as
predictors.



The model Y ~ N(D, 2R() + 2I) assumes that the variable to be
predicted, y, is normally distributed, but this will not always be a reasonable
assumption. Extension using GLMs is possible, for which the expected
value of yi, E[yi] = µi, where µi is linked to the predictor variables by means
of a known function h(.), so that h(µi) = D; the normal distribution is then
replaced by whatever other distribution from the exponential family is
deemed appropriate. It was assumed that there is no trend over the period
1970-2005 in annual maximum one-day rainfall and, in fact, Buarque et al.
(2010) have shown that trends in annual maximum rainfalls for durations
from one to five days are small. Where trends are thought to exist it would
be possible to adapt the model by including a parameter to represent trend;
but since this may be different for different sites, and since the mean value
yi at the i-th site would be replaced by yij (the value at the i-th site in the j-th
year of record) the dimensionality of the model would be very greatly
increased. While conceptually simple, numerical difficulties could arise.
In this paper, the geostatistical model given by (3) has been illustrated solely to
estimate two selected rainfall characteristics (L1 and L2) at ungauged sites, but
in principle it would be possible to apply the same procedure to construct fine
grid estimates of seasonal or monthly rainfall (whether as time series, or as
seasonal or monthly averages), by supplementing the information given by a
limited rain gauge network with the seasonal or monthly totals obtained from
satellite datasets. Fitting and using the model season by season, or month by
month, would not reproduce any serial correlation existing in seasonal or
monthly totals (or to be more explicit, annual fluctuations in seasonal or
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First -momentL L1 Second -momentL L2

RMSEL1, TRMM RMSEL2, TRMM14.348 6.046

RMSEL1, CMORPH RMSEL2, CMORPH

RMSEL1, Trend RMSEL2, Trend

RMSEL1, Weighted RMSEL2, Weighted

RMSEL1, Full RMSEL2, Full

16.080 11.985

9.470 4.044

9.064 3.680

2.603 0.042

Table 3.5 RMSEs calculated from differences between “observed” and predicted values of
L1, for five different prediction procedures (for explanation of symbols, see text).
and for the L-moment dispersion L2.



monthly rainfall would be reproduced, but serial correlations between residuals
about these annual fluctuations would not). Also, applying the modelling
procedure to derive sequences of daily rainfall would be problematical because
the spatial and temporal correlation structure of daily rainfall would not be
reproduced; simply using the model on a day-by-day basis would not
necessarily yield the alternating runs of wet and dry days. Extension to the
combination of ground level information on monthly or seasonal climate
variables, measured at ground level, with satellite derived counterparts would
also be possible, provided that the density of surface climate stations is
sufficient to enable parameters in the spatial correlation model to be estimated.

3.7 CONCLUSIONS

A modelling procedure is illustrated in which the first two L-moments of
annual maximum one-day rainfall are estimated at sites without rainfall
records, by combining limited information from existing rain gauge networks
with information contained in datasets derived from satellite mounted
instrumentation (or derived from any other remote sensing procedure).
Extending the analysis to annual maximum rainfalls accumulated over different
periods yields estimates of IDF curves at ungauged sites. Essential
characteristics of the procedure are: (i) where a number of candidate satellite
derived predictors of rainfall characteristics exist for the ungauged sites, the
most useful predictors can be identified; (ii) the candidate satellite datasets need
not be of equal length, nor of equal spatial scale, nor contemporaneous with the
limited records from any existing rain gauge network. In the case of the first
two L-moments, a “leave-one-site-out” analysis showed that the modelling
procedure gave smaller RMSEs than a number of interpolation procedures in
common use. The procedure is also applicable for predicting other variables of
hydrological interest (seasonal and monthly average rainfall; seasonal and
monthly time series of rainfall; …) at ungauged sites, whether as monthly or
seasonal averages or as time series of seasonal or monthly totals.
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4.1 ABSTRACT

At the beginning of the PUB Decade the process approach to hydrological
prediction was proposed as part of the solution to the problem of predicting
in ungauged basins; however, persistent errors in model process descriptions
continue to hamper the progress of hydrology as a science and in the
development of solutions for PUB. Process algorithms developed in the last
three decades of research in Canada and elsewhere provide solutions to most
of these errors for cold regions environments, but the implementation of
these algorithms within a predictive model is nontrivial. An approach
combining deductive, inductive, and abductive reasoning for developing
appropriate model process structure, basin discretization and
parameterization is applied to the ungauged portion of the Smoky River
Basin in Alberta, Canada. Deductive reasoning uses known physical laws
and relationships to derive information from existing basin inventories and
satellite imagery. Inductive reasoning is used to calibrate a small selection
of sub-surface model parameters using discharge measured in a local sub-
basin. Abductive reasoning is used to borrow parameters from a suite of
process and modelling research basins in western Canada. The model
predicted the peak spring flows on the Smoky River over several years and
at two different scales with reasonable accuracy. This suggests that
prediction in ungauged basins using physical principles is possible and
indeed a viable alternative in regions of the world where stream gauges are
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sparse or non-existent. Since hydrology is a science, prediction in both
gauged and ungauged basins using physical principles is not only possible,
but should be the preferred approach to simulating the hydrological cycle.

4.2 RÉSUMÉ

Au début de la décennie de PBNJ, l’approche processus de la prévision
hydrologique a été proposée comme élément de solution au problème qui
consiste à formuler des prévisions en bassins non jaugés; toutefois, des
erreurs persistantes dans les descriptions du processus du modèle
continuent d’entraver les progrès de l’hydrologie en tant que science ainsi
que l’élaboration de solutions pour les PBNJ. Les algorithmes de
processus mis au point au cours des trois dernières décennies de
recherches au Canada et ailleurs offrent des solutions à la plupart de ces
erreurs pour les milieux situés en régions froides. Cependant, la mise en
œuvre de ces algorithmes dans le cadre d’un modèle de prévision est non
triviale. Une approche qui combine un raisonnement déductif, inductif et
abductif pour l’élaboration d’une structure de processus de modèle
appropriée, la discrétisation et la paramétrisation à l’échelle du bassin, est
appliquée à la partie non jaugée du bassin de la rivière Smoky en Alberta,
au Canada. Le raisonnement déductif fait appel aux relations et aux lois
physiques connues pour extraire l’information des inventaires existants
des bassins et de l’imagerie satellitaire. Le raisonnement inductif sert à
l’étalonnage d’une petite sélection de paramètres de modèle de subsurface
au moyen du débit mesuré dans un sous-bassin local. Le raisonnement
abductif est utilisé pour emprunter des paramètres d’un ensemble de
processus et à des fins de modélisation des bassins de recherche dans
l’Ouest canadien. Le modèle a permis de prédire avec une exactitude
raisonnable les débits de pointe du printemps de la rivière Smokey sur
plusieurs années et à deux différentes échelles. Cela donne à penser que les
prévisions en bassins non jaugés au moyen de principes physiques est
possible et constitue en fait une solution de rechange viable dans les
régions du monde où les fluviomètres sont peu abondants ou inexistants.
Étant donné que l’hydrologie est une science, la prévision à la fois en
bassins jaugés et non jaugés à l’aide de principes physiques est non
seulement possible, mais elle devrait être l’approche privilégiée pour ce
qui est de simuler le cycle hydrologique.
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4.3 INTRODUCTION

Prediction in ungauged basins (PUB) has been hampered by both a lack of
information on the basin and its hydrological characteristics (Sivapalan et al.,
2003a), and by ubiquitous misconceptions on the operation of the
hydrological cycle that have persisted in many hydrological models. Almost
a decade ago, the process approach to hydrological prediction was proposed
as a solution to the problem of PUB (Pomeroy et al., 2005); however,
persistent errors in model process descriptions continue to hamper the
progress of hydrology. These misconceptions cause systematic deviations of
model simulations from actual hydrological processing. Calibration to
streamflow observations has been used to “correct” these deviations;
however, problems of equifinality cause uncertainty in parameter
identification (Bevan and Freer, 2001). These create an artificial dilemma.
The reliance on calibration, when streamflow observations are missing,
creates the problem of predicting in ungauged basins; when observations are
available the reliance on calibration supports the continuing persistence of
deficient modelling approaches. This dilemma is artificial as the need for
calibration is partly due to conceptual errors in hydrological model structure,
form, and resolution; and partly due to an inability to identify values for
certain parameters. Making progress in reducing the problems of PUB
requires advances on both aspects of this problem. The objective of this paper
is to demonstrate using a three-stage approach of deduction, induction, and
abduction of information to identify some common misconceptions in
hydrological models and how they might be readily corrected, and to show
how appropriate model structure and parameters can be identified. The
procedures are demonstrated in the development of a predictive system for
the ungauged portions of the Smoky River Basin, Alberta, Canada.

Persistent misconceptions in hydrological modelling

Many older hydrological concepts, sometimes called “hydromythologies”,
often persist in hydrological models despite being dismissed by more recent
scientific investigations. This situation is not new (e.g. Klemeš, 1986).
Predictive problems caused by these misconceptions are particularly evident
for cold and sub-humid regions that are outside of the primary regions of
hydrological model conceptualization and development, but are found in all
regions. The following are but a few examples of misconceptions that are
found in many hydrological models in current use; specific models using
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various hydromythological algorithms are not mentioned by name, but the
knowledgeable reader will easily identify many examples for each point; the
corrections are noted in italics and in references cited following the
hydromythology.

1. Solar and net radiation are impossible to estimate with normal
meteorological data and so energy balance formulations for
evapotranspiration, sublimation, soil thaw, snowmelt, and glacier
melt cannot be operated in hydrological models and must be
replaced by empirical temperature index formulations. [There are
several relationships to estimate solar and long-wave radiation from
latitude, time of year, air temperature, and humidity which can be
used to drive energy balance snowmelt and combination type
evapotranspiration algorithms, (Walter et al., 2005; Sicart et al.,
2006; Shook and Pomeroy, 2011a).]

2. Vegetation is not a dynamic mediator of hydrology and can be
represented by simple fixed boundary conditions or constant
unresponsive functions. [There are many dynamic vegetation growth
and rooting algorithms available to provide resistance to potential
evaporation, and complementary feedback relationships are available
for when vegetation, roots, and soils are relatively unknown (Granger
and Gray, 1990; Brimelow et al., 2010; Armstrong et al., 2010).]

3. Snowfall and rainfall can be distinguished by a simple temperature
threshold. Snowfall gauge undercatch is not important, and most snow
that falls is the snowpack available for melt because sublimation losses
are negligible. [Precipitation phase is controlled by the psychrometric
equation, snowfall gauge undercatch can be very substantial but is
correctable, and sublimation can consume a substantial proportion of
snowfall in dry environments. Sublimation can be estimated using
energy balance and aerodynamic approaches (Pomeroy and Gray,
1995; Goodison and Metcalfe, 1992; Harder and Pomeroy, 2013).]

4. Soils can be adequately represented by a fully-connected uniform
porous media with horizontally layered properties, and without
macropores and vertical structure. The hydraulic properties of soils
change with scale by some unknown scaling mechanism, but are
temporally invariant, fixed over hillslopes and little affected by
vegetation, animals, and tillage. [Macropores caused by plants,
animal and mankind can provide a primary soil flowpath and
infiltration equations can be modified for macropore flow. The

44

Putting Prediction in Ungauged Basins into Practice Pomeroy et al



variance of soil properties over a hillslope is a critical influence on
variable contributing areas, fill and spill mechanisms control
saturated flow at the soil-bedrock interface (Beven and Kirkby,
1979; Beven and Germann, 1982, 1985; Tromp-van Meerveld and
McDonnell, 2006; Craig et al., 2010).]

5. Drainage basins are definable in that sub-surface flow drains within
the drainage basin, all land surfaces can always drain freely to a
stream, and all parts of the basin are always fully contributing to
streamflow via overland or sub-surface flow. As a result, drainage of
stored water produces basin discharge via unique functions that are
often linear. [Contributing areas expand and contract as
depressional storage and saturated flow pathways fill and empty;
the relationship between contributing area and storage is non-linear
hysteretic but can be modelled using network connectivity concepts
(Spence and Woo, 2003; Phillips et al., 2011; Shook et al., 2013).] 

6. Overland flow is the dominant runoff mechanism and so open
channel hydraulic equations can be used to calculate the celerity of
runoff from land. [Sub-surface flow abounds and its velocity is
controlled by soil and topographic parameters (Henderson and
Wooding, 1964; Sabsevari et al., 2010).]

7. Water movement into, through, and above frozen soils behaves in a
similar manner to unfrozen soils. [Infiltration and soil hydraulics are
controlled by the interaction of soil ice content and porosity over time
which is controlled by coupled energy and mass balance equations
and influenced by the depth of freezing and the presence of permafrost
(Zhao and Gray, 1999; Gray et al., 2001; Quinton and Gray, 2001).]

The Cold Regions Hydrological Modelling platform (CRHM) was created
as a set of algorithms that could be used to address such problems in a
flexible, modular hydrological modelling context (Pomeroy et al., 2007).
The application of CRHM in this paper shows how most of these
hydromythologies can be overcome with modern, flexible, modelling
technologies, based on scientific principles.

Deduction, induction, and abduction and the cold regions
hydrological model

Inductive (bottom up) and deductive (top down) approaches to
environmental prediction have abounded for many years and the application
of these approaches to hydrology are reviewed in Dornes (Chapter 10).
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Philosophically, they go back to the reasoning of Ancient Greece, but similar
concepts can be found in Chinese philosophy (Liu et al., Chapter 2) and are
perhaps common to the experience of humanity in solving problems.
Unfortunately in hydrology, there has been persistent confusion about what
these terms mean and they have been commonly misapplied in the field. For
instance, Sivapalan et al. (2003a) and Littlewood et al. (2003) define the top
down or downward approach in hydrology to be driven by observation and
moving from general observations to specific rules and therefore deductive,
whilst in the study of scientific philosophy it is accepted that data driven
approaches are inherently inductive and bottom up (Vickers, 2013). Physics-
based approaches are in fact deductive and top down as they derive from
application of accepted rules (Holyoak and Morrison, 2005). Further, what
has been referred to in the PUB decade as the top down approach in
hydrology, is not only inductive and empirical, but can lead to serious errors
in conclusions, the dangers of which have been known since the writings of
the classical philosopher Sextus Empiricus in the 3rd C AD (Romesburg,
1981; Popper and Miller, 1983). Dornes (Chapter 10) shows the benefits of
combining top down and bottom up approaches for hydrological prediction.
In this paper, deductive and inductive approaches follow the accepted
conventions of philosophy (Vickers, 2013) and correspond to physics-based
and empirical approaches respectively.
Whilst it has become clear in PUB that both induction and deduction are
needed to develop robust and appropriate hydrological models, the role of
abduction (inference) has not been widely discussed despite its great utility to
PUB and heretofore unrecognized use in hydrology (Magnani, 2001; Couclelis,
2003). Abduction follows a logic where the major premise is true but the minor
premise is probable; here it begins with an incomplete set of observations from
a wide range of sources and proceeds to the likeliest possible explanation. It
does its best with the information at hand which is often incomplete – a typical
situation that hydrologists face. Combining the three approaches in hydrology
can be termed the “DIA Approach” and can be quite powerful. A simple
example of the DIA approach applied to snowmelt runoff follows:

1. Deduction (rule based / top-down): allows deriving b from a only
where b is a formal logical consequence of a. Given a rule, based on
the continuity equation, that whenever the snow melts in a basin that
streamflow must result, the deductive statement is: snow is melting
in a basin, therefore there must be streamflow.
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2. Induction (observation based / bottom-up): allows inferring b from
a, where b does not follow necessarily from a. Given the
observation that the stream flows only when there is snowmelt in a
particular basin, the inductive statement is: the stream is observed to
be flowing, therefore there must be snowmelt in the basin.

3. Abduction (opportunistic / lateral): allows inferring to the best
explanation even when information is incomplete. Given the
inference that when the regional snowcover melts there is
streamflow in many local streams in springtime and that this can
occur without rainfall, the abductive statement is: streamflow is
observed without rainfall in springtime, therefore it is likely that
snow is melting in the basin.

A weakness of the inductive approach in this example is that streamflow can
be derived from sources other than snowmelt in the spring, and a weakness
of the deductive approach is that the rule might be misapplied and snowmelt
water might evaporate, infiltrate, or form depressional storage, rather than
forming streamflow. The flexibility and ability to bring in auxiliary
information of the abductive approach is appealing for complex
hydrological problems, but it also has weaknesses, such as the situation
where the basin of interest is not like others in the region. Clearly, the use of
any reasoning approach by itself can lead to misconceptions and errors, but
the combined DIA approach can be powerful when the availability of
observations, the applicability of rules, and the reliability of regional
inference are limited, as is often the case in hydrology. The application of
physical laws by deduction permits rigorous enforcement of continuity of
mass and energy and the laws of thermodynamics and kinematics. Using
fundamental observations by induction to develop rules of hydrological
behavior is how hydrological science often advances. Inferring missing
observations or unknown hydrological behavior by abduction of rules or
induced behavior is how the hydrological response can be determined with
inadequate knowledge or information. There are clearly parallels between
the DIA approach and the traditional Chinese housewife approach outlined
by Liu et al. (Chapter 2).
CRHM is a modular modelling system that permits appropriate hydrological
processes for the basin, selected from a library of process modules, to be linked
to simulate the hydrological cycle as a purpose-built model (Pomeroy et al.,
2007). CRHM is very well suited for the DIA approach as an initial selection
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of process laws can be considered deduction, the evaluation of process
performance, inclusion and model redesign based on learning from model
failure can be considered induction, and the use of regional analogues for
structure and parameters from research basins can be considered abduction. 
From its inception, CRHM has focused on the modular incorporation of
physically based descriptions of cold regions hydrological processes, but it
also includes a full range of temperate regions modules. Recent
developments include options for treeline forest effects from alpine blowing
snow (MacDonald et al., 2010), improved soil moisture accounting and fill
and spill depressional storage (Fang et al., 2010), variable rooting zones for
evapotranspiration calculations (Armstrong et al., 2010) and enhanced forest
canopy interception and radiation modules (Ellis et al., 2010). CRHM has a
suite of process modules including calculation of solar radiation using diurnal
temperature ranges, direct and diffuse radiation to slopes, long-wave
radiation in complex terrain, intercepted snow, blowing snow, sub-canopy
turbulent and radiative transfer, sublimation, energy balance snowmelt,
infiltration to frozen and unfrozen soils, rainfall interception, combination-
type evapotranspiration, sub-surface flow, depressional storage fill and spill,
saturation excess overland flow, and separate routing of surface, sub-surface,
and streamflow. The selection of modules is an inductive exercise, depending
on the biophysical environment and data availability. CRHM uses an object-
oriented structure to develop, support, and apply dynamic model routines.
Existing algorithms can be modified or new algorithms can be developed and
added to the module library, which are coupled to create a purpose-built
model, suited for the specific application. It is particularly useful to replace
hydromythologies with modules based upon physical principles. 
CRHM operates on the spatial discretization of the hydrological response unit
(HRU) which has been found optimal for modelling in basins where there is a
good conceptual understanding of hydrological behaviour, but incomplete
detailed information to permit a fully distributed fine scale modelling
approach (Dornes et al., 2008). The level of disaggregation into HRUs is
guided not only by the spatial variability of biophysical attributes and drainage
conditions in the basin, but by the available information to describe these
attributes as parameters and so is simultaneously an inductive and deductive
exercise. Being physically based, the majority of CRHM modules do not
require calibration against gauged flows and therefore are suitable for
parameterization in ungauged basins. Parameters are typically selected a
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priori from soil/land cover characteristics, vegetation cover, drainage
networks, and other basin information – a deductive exercise. Some
unmeasured parameter values can be transferred from hydrologically similar
basins – an abductive exercise. Calibration of unknown parameters against
gauged flows is possible using trial and error methods – an inductive exercise. 

4.4 APPLICATION OF THE DIA APPROACH TO HYDROLOGICAL
PREDICTION FOR THE SMOKY RIVER BASIN

The Province of Alberta needs to predict spring streamflow for the ungauged
portion (46%) of the 51 839 km2 Smoky River Basin as the ungauged flows
have been implicated in exacerbating river ice jams and floods on the Peace
River, downstream. The Smoky River flows north out of the Canadian Rocky
Mountains into the Peace River lowlands which are the northernmost
agricultural region in Canada. The region is remote; weather and climate
stations are sparse in the basin and require substantial interpolation and
infilling of data for use in hydrological modelling. There are 26 ungauged and
14 gauged sub-basins in the Smoky River Basin and these vary from mountain
headwater basins dominated by alpine tundra and sub-alpine forest, upland
boreal forest sub-basins to lowland agricultural and forested sub-basins.

Model process structure by deduction

Known hydrological characteristics of the region are long periods of winter
(usually five months) and snowcovers heavily modified by wind
redistribution and sublimation of blowing snow (Pomeroy and Gray, 1995).
The blowing snow process is affected by the interaction of local topography
and surficial vegetation cover with regional wind flow patterns (Pomeroy et
al., 1993; Fang and Pomeroy, 2009). High surface runoff derives from spring
snowmelt, which is 80% or more of annual local surface runoff in the Prairies
(Gray and Landine, 1988), and occurs as a result of frozen mineral soils at the
time of melt and a relatively rapid release of water from melting snowpacks
(Gray et al., 1985). Snowmelt timing and meltrate are primarily controlled by
the net inputs of solar radiation, thermal radiation, energy advected from
rainfall, and turbulent transfer of sensible and latent heat. These net inputs are
controlled by the storage of internal energy in the snowpack and the snow
surface albedo, both of which change rapidly in the pre-melt and melt period.
Meltwater infiltration into frozen soils can be restricted, limited, or unlimited
depending on soil infiltrability (Gray et al., 1985; Zhao and Gray, 1997).
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Frozen mineral soils usually have limited infiltration characteristics, which
means that the infiltrability is controlled by the degree of saturation of the soil
pores with water and ice. The degree of saturation can be estimated from the
soil porosity and the volumetric moisture content of the preceding fall if
overwinter soil moisture changes are minimal. Substantial mid-winter melts
or rain events can cause restricted infiltration, in which most snowmelt water
goes directly to runoff (Gray et al., 2001) due to the presence of ice layers at
the snow-soil interface. Heavy clay soils can crack when frozen, resulting in
nearly unlimited infiltration; hence little to no runoff generation (Pomeroy et
al., 1990). Deep prairie soils are characterized by good water-retaining
capacity and high unfrozen infiltration rates (Elliott and Efetha, 1999). Most
rainfall occurs in spring and early summer from large frontal systems and the
most intense rainfall in summer is associated with convective storms over
small areas (Gray, 1970). During summer, most rainfall is consumed by
evapotranspiration associated with the growth of crops and perennial grasses
(Armstrong et al., 2008). Evapotranspiration occurs quickly from wet
surfaces such as water bodies, wetted plant canopies, and wet soil surfaces,
but relatively slowly from unsaturated surfaces such as bare soils and plant
stomata (Granger and Gray, 1989). Any physically based runoff model for
this region must correctly resolve these hydrological processes.
Deduction based on the experience of the modellers in constructing models
in western Canada with the known physical processes in the region,
informed the construction of a model using physically based modules in a
sequential manner to simulate the dominant hydrological processes for the
Smoky River. Appropriate modules were selected that could be run to
robustly forecast the hydrological cycle of the region in a physically based
manner. Figure 4.1 shows the schematic setup of these modules. The
following list describes the methods that are included in each module:

1. Observation module: reads the meteorological data (temperature, wind
speed, relative humidity, vapour pressure, precipitation, and radiation)
used to operate CRHM, adjusting temperature with environmental
lapse rate and precipitation with elevation and wind-induced
undercatch, and providing these inputs as the “driving meteorology”
to other modules as required by the module calculations.

2. Radiation module based upon Garnier and Ohmura (1970):
calculates the theoretical global clear-sky radiation as direct and
diffuse solar radiation to slopes based on latitude, elevation, ground

50

Putting Prediction in Ungauged Basins into Practice Pomeroy et al



slope, and azimuth, providing radiation inputs to the energy-budget
snowmelt module, and the net all-wave radiation module.
Transmittance is estimated using a diurnal temperature range method
(Annandale et al., 2002; Shook and Pomeroy, 2011).

3. Long-wave radiation module based upon Sicart et al. (2006):
estimates incoming long-wave radiation using vapour pressure, air
temperature, and the short-wave transmittance estimated from the
short-wave radiation module. This feeds into the energy-balance
snowmelt module.

4. Albedo module based upon Gray and Landine (1987): estimates
areal snow albedo throughout the winter and into the melt period
and also indicates the beginning of melt for the energy-balance
snowmelt module.

5. Canopy module based upon Ellis et al. (2010): estimates the snowfall
and rainfall intercepted by the forest canopy and updates the under-
canopy snowfall and rainfall and calculates short-wave and long-wave
sub-canopy radiation. This module has options for open environment
(no canopy adjustment of snow mass and energy), small forest clearing
environment (adjustment of snow mass and energy based on diameter
of clearing and surrounding forest height), and forest environment
(adjustment of snow mass and energy from forest canopy).

6. Blowing snow module based upon the method of Pomeroy and Li
(2000): simulates the inter-HRU wind redistribution of snow transport
and blowing snow sublimation losses throughout the winter period.

7. Energy-Budget Snowmelt Model based upon Gray and Landine
(1988): estimates snowmelt by calculating the energy balance of
radiation, sensible heat, latent heat, ground heat, advection from
rainfall, and change in internal energy.

8. All-wave radiation module using the method of Granger and Gray
(1990): calculates the net all-wave radiation from short-wave radiation
for input to the evaporation module for snow-free conditions.

9. Infiltration module using Gray’s snowmelt infiltration algorithm (Gray
et al., 1985): estimates snowmelt infiltration into frozen soils; Ayers’
infiltration (Ayers, 1959): estimates rainfall infiltration into unfrozen
soils based on soil texture and ground cover. Both infiltration algorithms
link moisture content to the soil column in the soil module. Surface
runoff forms when snowmelt or rainfall exceeds the infiltration rate.
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10. Fall soil moisture module: sets the fall soil moisture status for
running multiple-year simulations. The amount of soil moisture and
the maximum soil moisture storage in the soil column are used to
estimate the fall soil moisture status, which provides the initial fall
soil saturation for the infiltration module.

11. Evaporation module using Granger’s evaporation expression
(Granger and Gray, 1989; Granger and Pomeroy, 1997): estimates
actual evapotranspiration from unsaturated surfaces using an energy
balance and extension of Penman’s equation to unsaturated
conditions; Priestley and Taylor evaporation expression (Priestley
and Taylor, 1972): estimates evaporation from saturated surfaces
such as stream channels. Both evaporation algorithms modify
moisture content in the interception store, ponded surface water
store, and soil column and are restricted by water availability to
ensure continuity of mass; the Priestley and Taylor evaporation also
updates moisture content in the stream channel.

12. Soil & Hillslope module: calculates sub-surface flow and simulates
groundwater-surface water interactions using physically based
parameters. The present module was revised from an original soil
moisture balance routine developed by Leavesley et al. (1983) and
modified by Pomeroy et al. (2007), Dornes et al. (2008), Fang et al.
(2010), and Fang et al. (2013) and now calculates the soil moisture
balance, groundwater storage, subsurface and groundwater discharge,
depressional storage, and runoff for control volumes of two
unsaturated soil layers, the groundwater layer and surface depressions.
Groundwater recharge occurs via percolation from the soil layers or
directly from depressional storage via macropores. Subsurface
discharge occurs via horizontal drainage from either soil layer;
groundwater discharge takes place through horizontal drainage in the
groundwater layer. Surface runoff occurs when inputs from snowmelt
or rainfall exceed subsurface withdrawals from saturated soils or if the
rate of snowmelt or rainfall exceeds the infiltration rate. The drainage
factors for lateral flow in soil layers and groundwater layer (i.e.
subsurface and groundwater discharges) as well as vertical flow of
excess soil water to groundwater (i.e. groundwater recharge) are
estimated based on Darcy’s flux. The Brooks and Corey (1964)
relationship is used to calculate the unsaturated hydraulic conductivity.

13. Routing module: the Muskingum method is based on a variable
discharge-storage relationship (Chow, 1964) and is used to route
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runoff between HRUs in the sub-basins. The routing storage
constant is estimated from the average distance from the HRU to the
main channel and average flow velocity; the average flow velocity is
calculated by Manning’s equation (Chow, 1959) based on the
average HRU distance to the main channel, average change in HRU
elevation, overland flow depth, and HRU roughness.

Model HRU structure by induction 

Hydrological response units (HRU) are based on combinations of
vegetation, soils, drainage, waterbody, and topographic parameter
information. Sub-basins of the Smoky River Basin span the mountains and
foothills, boreal forest, boreal forest – agricultural transition, and
agricultural ecoregions. The boreal forest has been heavily impacted by
forest harvesting and disturbance for oil and gas production platforms and
pipelines, and agricultural regions are heavily cultivated to cereal and
oilseed crops. HRU delineation varied by ecoregion; in all areas land cover
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Figure 4.1 Flowchart of physically based hydrological module used in the Lower Smoky
River Model created using CRHM.



and drainage were important; however, in alpine areas slope, aspect, and
elevation were included whereas in the flatter agricultural areas soil texture
was used. Figure 4.2 shows how an overall delineation of land cover from a
satellite image classification was used to delineate HRU specific to each
ecoregion, by induction informed by a site visit and field observation of how
satellite-derived land cover classifications corresponded to suitable
landscape units for hydrological simulation. Figure 4.3 presents a map of the
HRUs for the ungauged portion of the basin and of the drainage pattern.
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Figure 4.2 HRU generation for the Smoky River modelled sub-basins.



Model parameterization by DIA

Deduction

The sub-basin network was extracted using an automated basin delineation
tool, TOPAZ, which uses rules to decide on drainage patterns from the
digital elevation model (Garbrecht and Martz, 1997). For HRU, the
corresponding area, elevation, aspect, and slope for the HRUs were
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Figure 4.3a HRU for the modelled sub-basins in the Smoky River Basin.



computed using the SAGA GIS (Conrad, 2006) terrain “analysis profile
tool” and the ArcGIS (Environmental Systems Research Institute, 2012)
“extract by mask” tool, as described by Fang et al. (2010). This was largely
a deductive exercise obtained from existing information using rules.
Vegetation and soils were determined by Alberta Biodiversity Monitoring
Institute satellite remote sensing vegetation classifications and soil surveys
and were interpreted to leaf area index, vegetation height, and soil texture
classes using rules developed from field studies in western Canada over
many years (e.g. Pomeroy and Gray, 1995; Pomeroy and Brun, 2001;
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Figure 4.3b Smoky River Basin channel network and sub-basins.



Pomeroy et al., 2002). These rules were modified by ecoregion as it is
understood from ecological principles that a “grass” classification in an
alpine ecoregion corresponds to tundra, whilst in a prairie ecoregion it
corresponds to grassland. Hydraulic parameters such as Manning’s n and
channel shape were estimated from observations made during site visits. 
Induction

The need to adjust some model parameters was informed by induction since
the initial sub-basin modelled flows matched observed streamflows very
poorly. Induction with respect to sub-basin streamflow was used to adjust
the vertical profile of saturated hydraulic conductivity in soil, and the sub-
surface travel time parameter, as these parameters were not measured. No
other parameters were calibrated. 
Abduction

As local measurements of many parameters were not available, their
values were abducted from detailed observations in four Canadian
ecoregions as explained in Pomeroy et al. (2005). For instance, abduction
was used to set fall soil moisture parameters to address the impact of
macropores in soil (Darwent and Baily, 1982) and the snow interception
parameters to address the effects of strong winds on interception
efficiency (Pomeroy and Gray, 1995). Additional information was
extracted from studies of Prairie agricultural fields (Knapik and Lindsay,
1983; Pomeroy et al., 2007; Armstrong et al., 2008; Fang and Pomeroy,
2009; Fang et al., 2010; Pomeroy et al., 2010); from alpine tundra in
Alberta and Yukon (MacDonald et al., 2009; 2010; Fang et al., 2013), and
from boreal forest in Saskatchewan and Yukon (Granger and Pomeroy,
1997; Hedstrom and Pomeroy, 1998; Pomeroy et al., 2002). The set of
model parameters and the parameterization process are described in detail
by Pomeroy et al. (2013). 

4.5 IMPLICATIONS OF MODELLING RESULTS

Simulations of ungauged streamflows are by definition impossible to
evaluate directly. In an attempt to evaluate the model against gauged flows,
nine years of local simulated ungauged inflows were added to routed gauged
upstream flows and compared to the gauged downstream flows on the Little
Smoky River at Guy and the Smoky River at Watino in Figure 4.4. The
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gauged upstream flows were routed so that the discharges of gauged and
modelled flows were synchronized. The predicted seasonal spring
discharges (modelled plus routed gauged flows) from 15 March to 31 May
were compared to the gauged flows for both rivers for nine spring periods
and are shown in Figure 4.5. For the Little Smoky River simulations, the
mean bias ranged from -0.60 in 2007 to 0.76 in 2010, indicating the
cumulative spring discharge ranged from 60% underestimation to 76%
overestimation with an average seasonal underestimation of 3%.
Cumulative spring flows were underestimated by 18.5% over the nine
springs. For the Smoky River simulations, the mean bias ranged from -0.07
in 2008 to 0.41 in 2009, indicating the cumulative spring discharge ranged
from a 7% underestimation to a 41% overestimation with an average
seasonal overestimation of 12%. Cumulative spring flows were
overestimated by 9.7% over the nine springs. These statistics, when
evaluated along with the Nash-Sutcliffe coefficient for the Little Smoky
River and Smoky River daily hydrographs of 0.41 and 0.87, suggest good
model performance in hydrograph prediction and in estimating the water
balance, with model performance improving with increasing basin size and
distance downstream. This is partly due to the contribution of the routed
gauged flows to the modelled flows and partly due to the effect of increasing
basin size on masking unmeasured and missing precipitation data and errors
in parameterization and model structure. Overall, it is a confirmation that a
physically based model with minimal calibration can provide good
simulations of ungauged basins when the DIA approach is used to develop
and parameterize the model.
The success of the abductive approach to model development and
parameterization in this example was due to the availability of information
from intensive research basins in similar ecoregions to those occurring in the
basin (Pomeroy et al., 2005). These research basins were not nearby, in
some cases being over 1000 km away from Alberta, in Saskatchewan and
the Yukon Territory, but the similarity of vegetation form and structure, soil
structure, drainage basin spatial arrangement, and climate across these
biomes permitted the transfer of certain conceptual approaches and
physically identifiable parameters over vast distances. Kouwen et al. (1993)
suggested this approach for parameterization of grouped response units in
large scale hydrological models, and Pietroniro and Soulis (2003)
demonstrated application of the parameter regionalization concept to water
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and energy cycle calculations over large areas of Canada. This suggests that
regionalization of modelling approaches on ecological, hydrological, and
climatic principles is viable and that this abductive approach can be
employed where there are networks of research basins from which detailed
hydrological relationships and parameter values can be obtained. These
research basins were established around the world in the International
Hydrological Decade of 1964-1975, and archives or recent studies from
those basins that still exist are invaluable resources for abductive
contributions to PUB.
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Figure 4.4 Comparisons of CRHM simulated plus routed real-time upstream gauged
streamflows and gauged daily streamflows from 4 March 2002 to 30 September
2010 for: (a) Little Smoky River near Guy and (b) Smoky River at Watino.
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Figure 4.5 Comparisons of CRHM simulated plus real-time upstream gauged streamflow and
observed gauged cumulative spring discharge from during 15 March-31 May in
nine springs from 2002 to 2010 for: (a) Little Smoky River near Guy and (b) Smoky
River at Watino.



4.6 CONCLUSIONS 

Persistent errors in model process descriptions have hampered the progress
of hydrological prediction as has the over reliance on either data-driven
inductive approaches or physically prescribed deductive approaches to
model derivation. Modelling errors can be corrected using process
algorithms developed from the last three decades of integrated, strategic
field and modelling research. Models including these process descriptions
may be capable of prediction in ungauged basins with minimal calibration if
parameters can be identified and appropriate model structures created. The
use of a combination of deductive, inductive, and abductive reasoning is
recommended for prescribing both an appropriate level of complexity and
process inclusion in model structure and in parameterizing process
algorithms. An example of the deduction, induction, and abduction approach
was shown in the development of model process structure, basin
discretization and parameterization and was applied to the ungauged portion
of the Smoky River Basin in Alberta, Canada. Deductive reasoning used
known laws to deduce information from existing basin maps and satellite
imagery. Inductive reasoning was used to calibrate certain model parameters
from a test sub-basin. Abductive reasoning was used to borrow parameters
from a suite of intensive research basins in western Canada. The model was
able to achieve good performance in predicting the peak spring flows on the
river over several years and at two different scales. This suggests that in
remote regions of the world where stream gauges are sparse or non-existent,
prediction in ungauged basins using physical principles is a possible, viable,
and preferable alternative.
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FLOOD RISK ASSESSMENT IN A POORLY GAUGED BASIN

Alexander Gelfan1

1Water Problems Institute, Russian Academy of Sciences, Moscow, Russia.

5.1 ABSTRACT

An approach for flood risk assessment in a poorly gauged basin has been
proposed and tested for the Sosna River basin in European Russia. The
approach involves searching a data-rich small proxy basin which is
hydrologically similar to the poorly gauged study basin, developing a
physically based model of flood generation in the proxy basin, and transferring
the developed model with adjustments to the study basin. In this case study, the
adjustment was carried out through the model calibration against snow and soil
freezing survey data in the study basin; streamflow data were not used for the
calibration. Long-term artificial time series of daily weather variables were
Monte Carlo simulated and input to the hydrological model to generate a
corresponding series of snowmelt flood hydrographs in the study basin.
Frequency distributions of flood characteristics (volume and peak discharge)
were derived from the long-term series of the modelled hydrographs. The
approach allows the derivation of frequency distribution of flood volume
without utilizing any streamflow observations in the study basin; however, in
order to obtain reliable frequency distribution of flood peak discharge, several
years of streamflow observations should be used for the additional calibration
of the model. The proposed approach is targeted for hydrological engineering
practice and considered as a suitable alternative to the traditional methods of
flood risk assessment in ungauged or poorly gauged basins. 

5.2 RÉSUMÉ

Une approche d’évaluation des risques d’inondation dans un bassin fluvial
avec un nombre insuffisant de limnimètres a été proposée et essayée pour la
rivière de Sosna située dans la partie européenne de Russie. Cette approche
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comprend une recherche d’un petit basin témoin riche en données qui est
semblable du point de vue hydrologique au basin exploré mal calibré, un
development d’une modèle physiquement justifiée de la formation des
inondations dans le bassin témoin ainsi qu’un transfert de la modèle
développée avec les ajustements dans le bassin exploré. Dans cette étude de
cas l’ajustement a été fait par le moyen d’étalonnage du modèle contre les
données d’un sondage sur la couverture de neige et congélation du sol dans
le bassin exploré. L’étalonnage n’a pas utilisé les données sur le débit d’eau
fluvial. Monte Carlo simulation a été effectuée pour obtenir des séries de
temps artificielles à long terme des variables météorologiques quotidiens qui
ont été entrées dans la modèle hydrologique afin de générer des séries
correspondantes d’hydrographes d’inondation de la fonte des neiges dans le
bassin exploré. Distributions de fréquence des caractéristiques d’inondation
(volume et débit de pointe) ont été dérivées de séries à long terme des
hydrographes modelés. Cette approche permet de dériver les distributions de
fréquence du volume de l’inondation sans utiliser aucunes observations sur
le débit de l’eau fluvial dans le bassin exploré. Pourtant, pour obtenir les
données fiables sur la distribution de fréquence du débit de pointe de
l’inondation, plusieurs années d’observations sur le débit de l’eau fluvial
doivent être utilisées pour avancer l’étalonnage du modèle. L’approche
proposée est axée sur la pratique d’ingénieur hydrologique et est considérée
une alternative convenable à méthodes traditionnelles d’évaluation des
risques d’inondation dans les bassins manquants ou sans limnimètres. 

5.3 INTRODUCTION 

Planning and design of water resources systems, flood management, and
protection are fundamentally dependent on reliable estimates of flood risk.
Most countries use a set of empirical methods for flood risk assessment, and
among these methods the flood frequency analysis (FFA) is the most
commonly used one for over a century. The standard at-site FFA is based on
acquisition of data of flood extremes, computation of observed probabilities
of occurrence, fitting of the appropriate probability distribution to the
observed probabilities with use of an appropriate parameter estimation
technique, and, finally, estimation of flood quantiles of the desired
probabilities. The fundamental weakness of the FFA is widely known (see,
for example, discussions in Klemeš, 1986; Singh and Strupczewsky, 2002)
and arises, first of all, from lack of available streamflow data for the
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overwhelming majority of river basins. This is the case especially when the
interest is in the assessments of extreme floods with return periods of
hundreds of years, i.e. much longer than the period of flood observations. The
data deficit results in increasing uncertainty of assessments for the desired
extreme floods that can negate the practical value of these assessments.
Moreover, in many countries, the gauging network has been reduced for the
past few decades. Presently, the number of stream gauges in Russia, for
instance, is about 70% of the density of the hydrological network that existed
during the 1980s. The density of the hydrological network is about an order
of magnitude less than the minimum density recommended by WMO (1994),
and one can assume that the difference between the number of gauged basins
and ungauged basins is of the same order. Regional statistical analyses of
flood frequency can to some extent compensate for the lack of temporal data,
but an additional, spatial dimension is introduced (Bobée and Rasmussen,
1995) that leads to increasing uncertainty of the desired estimates. 
Attempts at improving the FFA so far have been focused on the statistical
aspects, such as improvement of the parameter estimation techniques,
seeking probability distribution for improving goodness of fit, etc. Lack of
knowledge about the form of the parent distribution limits these attempts;
however, even if one assumes that the distribution form is known, the
paucity of the available observations per se leads to the unreliable results of
the extrapolation above the maximum observed flood. As an example,
Figure 5.1 presents the annual maximum peak discharges of the Seim River
(centre of European Russia) observed during 61 years (beginning from
1928) and fitted by a three-parameter gamma-distribution curve. Note that
in the range of the available observations, this distribution is
indistinguishable from the other distributions typically used for FFA of
annual maximum discharge, e.g. Log-Pearson type III distribution. Another
gamma-distribution curve is fitted to a 56-year sample obtained by
exclusion of the first five years of discharge (from 1928 to 1932) from the
original, 61-year sample. The legitimacy of the fitted curves cannot be
doubted, but there is an obvious difference between these curves when
extrapolated to extreme floods. The exceedance probability of the maximum
observed discharge (2230 m3/s), estimated by the 61-year sample, is 0.012
(83-year return period). If, for some reason, the observations began 5 years
later (in 1933 instead of 1928), the corresponding exceedance probability of
the same discharge would be four times less (0.003, i.e. 333-year return
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period). This presents a major difficulty in applying such statistical
techniques with limited time series for flood prediction purposes in
ungauged basins. 

An opportunity for refinement of the extreme flood frequency assessment is
associated with the inclusion of deterministic, physical information in
addition to statistical information extracted solely from the runoff
observation series. As Klemeš (1993) states: “if more light is to be shed on
the probabilities of hydrological extremes, then it will have to come from
more information on the physics of the phenomena involved, not from more
mathematics.” Such additional information may be both a posteriori;
empirical information about factors affecting flood generation (e.g.,
meteorological factors, watershed conditions), and a priori information,
reflecting accumulated knowledge on flood generation physics. In other
words, lacking homogeneous runoff data for the standard FFA, the data
deficit may be partly compensated by deterministic information on physical
processes and stochastic information on better defined forcing variables, e.g.
meteorological variables. 
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Figure 5.1 Gamma-distribution curves fitted to 61-year (solid line; solid circles) series of
observations at the Seim River beginning from 1928 and 56-years (dashed line;
open circles) series beginning from 1933 (explanations are in the text).



Development of such a model which is based on the deterministic
description of the hydrological processes and takes into account available
stochastic information on input meteorological variables is the subject of the
dynamic-stochastic approach to flood risk assessment (Kuchment and
Gelfan, 1991). The resulting dynamic-stochastic model integrates two
components: a physically based deterministic model of runoff generation
and stochastic models of the meteorological variables which are the inputs
into the deterministic model. The integration of dynamic and stochastic
approaches opens an opportunity for assessment of magnitude/frequency of
extreme floods in the basins where series of streamflow data are too short
and/or statistically non-homogeneous due to anthropogenic pressure on
environment and climate change (“virtually ungauged basins” (He et al.,
2011)), in other words, in the basins where the standard FFA is ineffective. 

Eagleson (1972) was the first who proposed a dynamic-stochastic model
based on the physically based description of hydrological processes of
rainfall flood generation; he derived a distribution function of flood peak
discharge through integration of joint probability distribution of rainfall
intensity and duration over the domain determined from the analytic
solutions of the kinematic wave equation. Eagleson’s (1972) approach to
flood frequency estimation has been used and extended by Carlson and Fox
(1976), Chan and Bras (1979), Hebson and Wood (1982), Diaz-Granados et
al. (1984), Bras et al. (1985), Blöschl and Sivapalan (1997), and others.

Bras et al. (1985) compared abilities of the models of Eagleson (1972),
Hebson and Wood (1982), and Diaz-Granados et al. (1984) to derive flood
frequency distribution for ungauged basins. Five river basins located in the
different physiographic and climatic conditions with catchment areas from
100 to 1000 km2 were selected and it was assumed that no streamflow data
were available, so that the parameters of the rainfall-runoff components of
the models were assigned a priori. The return periods of flood peak
discharges derived by each of the models for the five basins were compared
with the return periods estimated from the available data of observations.
The comparison has shown that none of these models agreed well with the
observations. Bras et al. (1985) concluded that performance of these models
could be significantly improved if some observation data could be used for
calibration of the rainfall-runoff models. 
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Blöschl and Sivapalan (1997) used the derived distribution approach in
order to test the “index flood” concept underlying the standard procedure of
determination of homogeneous geographical regions in regional FFA often
used for ungauged basins. The authors interpreted data from hundreds of
catchments in Austria and showed that the coefficient of variation of peak
discharge depends on the basin area, which contradicts the principal “index
flood” assumption of independence of variation of peak discharge. 
An alternative, numerical technique for deriving flood frequency is a Monte
Carlo simulation-based dynamic-stochastic modelling allowing one to
combine a sophisticated model of runoff generation with a stochastic
weather generator. A physically based model of rainfall flood was first
combined with the Monte Carlo continuous simulation of precipitation and
air humidity series by Kuchment et al. (1983); they showed for small basins
that extreme flood frequency numerically derived by the use of the available
short series of streamflow data for the model calibration is more reliable
than flood frequency obtained by the standard statistical analysis of that
series. Recently, the numerical dynamic-stochastic approach has been
applied, for example, by Franchini et al. (1996), Blazkova and Beven
(1997), Hashemi et al. (2000), Sivapalan et al. (2005), Fiorentino et al.
(2007), and Haberlandt et al. (2008) who used different deterministic
models (TOPMODEL, ARNO, HEC-HMS and others) for derivation of
rainfall flood frequency. 
Considerably fewer authors have applied the numerical dynamic-stochastic
approach to derive the frequency of extreme snowmelt floods (Kuchment
and Gelfan, 2002; Blazkova and Beven, 2004; Gelfan, 2010), and there are
no publications regarding snowmelt flood frequency assessment for
ungauged or poorly gauged basins. This is rather surprising, given (1) the
dominant role of snowmelt in the flow regime of rivers over vast cold
regions and the associated high cost of snowmelt flood events for the
economy of cold-region countries (e.g. in Russia more than 65% of the
disastrous floods are of snowmelt origin) and (2) the sparse gauge network
in most cold regions. 
The objective of this study was to develop an approach for assessment of
snowmelt flood risk in the basins where no streamflow data are available or
data are too scarce for application of the FFA but for which long-term
meteorological data are assumed to be available. The developed approach
consists of the following steps:
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1. Select a data-rich small proxy-basin which is hydrologically similar
to the ungauged study basin; the criteria of similarity proposed by
Kuchment and Gelfan (2009) are used for the selection (details
about the criteria are presented in the next section). 

2. Develop a physically based model of snowmelt flood generation for
the proxy-basin and “transpose” the model to the study basin
without use of the streamflow data in the latter basin.

3. Construct a stochastic weather generator using long-term
meteorological observations in the study basin. 

4. Assess flood risk in the study basin on the basis of the
dynamic-stochastic approach combining the “transposed” model
with the weather generator. 

In the next sections, the proposed approach is demonstrated by the example
of the Sosna River basin as the study basin. 

5.4 STUDY BASIN AND PROXY-BASIN: BRIEF DESCRIPTION AND
CRITERIA OF SIMILARITY

The Sosna River basin is located in the centre of European Russia, draining
west into the Don River. The study area of approximately 16 300 km2 (up to
the outlet at Elets town, 52°37'N, 38°28'E) is situated at the steppe-forest
physiographic zone (Figure 5.2). The basin terrain is a smooth plain. Soils
in the area belong to a steppe type of soil formation, being mainly
represented by common chernozem (black soils) and podzol with a texture
varying from heavy loam to clay. About 80% of the basin area is farmed; of
the remainder, pastures take up about 10%, ravines and gullies occupy 8%,
and forest about 2% of the basin area. Annual air temperature is +5.9 °C, the
mean air temperature in the coldest month (January) is -7.0 °C and +19.5 °C
in the warmest month (July). Annual precipitation is 475 mm, about 29% of
which falls as snow. The maximum snow water equivalent (SWE) varies
significantly from year to year (mean SWE is 69 mm with a maximum
observed value of 180 mm and minimum of 17 mm). The mean date of the
beginning of snowmelt is March 27. During the snowmelt period, which
averages 26 days, from 39% to 73% of annual runoff is generated (55% on
average). The snowmelt runoff coefficient varies from year to year over a
wide range: from 0.21 to 0.88. Mean snowmelt runoff is 72 mm; the mean
peak discharge of snowmelt floods is 1783 m3s-1 which is much greater than
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the highest observed peak discharge of rainfall flood, 388 m3s-1. The highest
peak discharge from a snowmelt flood was 4950 m3s-1 on April 5, 1970. The
Sosna River basin will be considered hereafter as an ungauged basin,
a so-called “pseudo-ungauged basin” (He et al., 2011).
Kuchment and Gelfan (2009) suggest that small experimental basins,
particularly those included in the network of the Russian water balance
stations (WBS), can be considered as good proxy-basin candidates. The
network of WBS was created in different physiographic zones over the
former USSR in the 1930s-1950s; more than 20 WBS existed at the end of
the 1980s. Presently, the number of Russian WBS sites is shrinking
significantly, but they are still a source of the unique long-term detailed data
including measurements of streamflow, meteorological and snow
characteristics, soil properties, hydrothermal regime of vadose zone,
evaporation, groundwater, etc. (Kane and Yang, 2004). 
A number of hydrological similarity criteria have been proposed in the
literature (e.g. Wagener et al., 2007). Beginning from the simplest criterion
of spatial proximity, the Yasenok Creek experimental basin located within
the territory of the Nizhnedevitskaya WBS (51°33'N, 38°22'E), near the
south-eastern boundary of the Sosna River catchment (Figure 5.2) was
considered as the initial choice of the proxy-basin for the Sosna River basin. 
The Yasenok Creek catchment (22 km2) is located in the upper part of the
Devitsa River basin draining east into the Don River. Relief is flat and the
dominant soils are chernozems with some podzol. The bottom water-bearing
horizon of 25-30 m depth is the main aquifer, which is drained only by main
watercourses. The vegetation cover of the station belongs to a band of
steppes rich in herbs with oak forests. Forests cover 4% of the catchment.
The main part of the Yasenok Creek basin is occupied by arable lands. The
mean annual temperature is 5.8°C; the mean annual precipitation is 507 mm.
The maximum SWE varies considerably from year to year, from 34 to
124 mm. Location of the measurement gauges within the catchment area is
shown in Figure 5.2. 
Comparing the above descriptions one can see that the Sosna River and the
Yasenok Creek basins have similar catchment attributes, such as
topographic characteristics, soil and vegetation type, etc. This likeness
allows one to expect that the catchments behave in a hydrologically similar
manner.
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Figure 5.2 Location of the study basin (Sosna River) and the proxy-basin (Yasenok Creek).



Measures of hydrological similarity (such as aridity index, topographic wetness
index, runoff coefficient, bifurcation ratio, etc.) differ in terms of the processes
they aim to represent (Blöschl, 2005) and a reasonable choice of the measures
depends on the understanding of the dominant runoff generation mechanism in
both gauged and ungauged catchments. In other words, one can talk about the
similarity of the prevailing features of runoff generation rather than similarity
of hydrological systems as a whole. Kuchment and Gelfan (2009) found that
the dimensionless indices derived from the Richards’ equation work well as
similarity measures for the arid steppe region where the infiltration excess
mechanism of runoff generation is dominated. Four dimensionless similarity
indices proposed by Kuchment and Gelfan (2009) were used here as the criteria
of hydrological similarity: (1) the Peclet number, which is the ratio of the rates
of moisture transfer by gravitational filtration and capillary diffusion; (2) the
index of maximum soil capacity, which is the ratio of the infiltration to water-
bearing capacities of soil; (3) the gravitational filtration efficiency, which is the
ratio of the saturated hydraulic conductivity to the mean precipitation rate; and
(4) the capillary filtration efficiency which is the ratio of the mean rate of
capillary filtration to the mean precipitation rate. Hydraulic properties of soils
needed for calculation of the above indices were adopted from the soil survey
data (Department of Hydrometeorological Service for the Central-Chernozem
Regions, 1975) as well as the data of the experiments made in the
Hydrophysical Lab. of the State Hydrological Institute (SHI) published in
(Kalyuzhny et al., 1988). For the Sosna and Yasenok catchments, the following
values of the similarity indices were obtained: the Peclet numbers are 0.43 and
0.38, the free soil capacity criteria are 1.59 and 1.78, the gravitational filtration
efficiencies are 81.0 and 66.7, and the capillary filtration efficiencies are 277.9
and 215.1, respectively. Taking into account a large spatial variability of the
hydraulic soil properties, the differences between the similarity indices for the
catchments are insignificant. Thus, the closeness of the indices was interpreted
as similarity of the processes of runoff generation in the basins, and the data-
rich Yasenok basin was assigned as the proxy-basin for the Sosna River basin. 

5.5 MODEL OF SNOWMELT FLOOD GENERATION

Description of the model and its development for the proxy-basin 

The model of snowmelt flood generation used in this study presents a
modification of the model version reported in Gelfan (2010). The model
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describes processes of snow accumulation and melt, water and heat transfer
in a soil during its freezing and thawing, infiltration into frozen and unfrozen
soil, detention of meltwater by basin storage, and overland and channel flow.
Below the main equations are shown; algorithms of their solution as well as
relationships for the parameters are presented in Gelfan (2010). 
Dynamics of snow depth, water/ice content of snow are calculated by the
equations:

(1)

(2)

(3)

where Hs is the snow depth; Is and s are the volumetric content of ice and
liquid water, respectively; Xs and Xl are the snowfall rate and the rainfall
rate, respectively; M is the melt rate; El and Es are the evaporation and
sublimation rates, respectively; Fi is the rate of refreezing of meltwater in
snow; Rs is the meltwater outflow from snowpack calculated taking into
account the maximum liquid water-retention capacity; V is the snowpack
compression rate.
Water and heat transfer in a soil during the processes of soil freezing,
thawing and infiltration of water are described by the following equations:

(4)

(5)

where W,  and I are the total water content, liquid water content, and ice
content of soil, respectively; K = K (, I) is the hydraulic conductivity of
soil; T is the temperature of soil;  =  (, I) is the thermal conductivity; D
and DI are the diffusivities under the constant values of I and , respectively;
cT = cT (, I) is the heat capacity of soil; LH is the latent heat of ice fusion.
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The hydraulic parameters of Equations (4) - (5) for a frozen soil are
calculated from the relationships (Gelfan, 2010) derived from van
Genuchten’s (1980) formulae for an unfrozen soil. 
Cumulative detention, DET, of meltwater by surface depressions is calculated
by the formula assuming exponential distribution of the storage capacity: 

(6)

where DET0 is the mean value of the free storage capacity before the
beginning of melt; R is the cumulative snowmelt outflow from snowpack. 
The rate of evaporation, E, from an unfrozen, snow-free soil is calculated as:

(7)

where S1 is the relative saturation of the upper soil layer; da is the air
humidity deficit; KE is an empirical coefficient. 
Runoff excess over the rectangular reaches is calculated taking into account
the variability of snow water equivalent before spring melt and saturated
hydraulic conductivity of soil. The same scheme was used and described in
detail by Kuchment and Gelfan (2002) for simulating sub-grid variability
within the finite-elements. 
To simulate overland flow over the Yasenok Creek catchment, its area was
schematized as a series of 18 rectangular reaches located along the main
channel. Overland flow along each of the schematized reaches was
described by the length-integrated kinematic wave equation written as: 

(8)

(9)

where h is the average flow depth; L is the length of the reach; R is the rate
of water inflow per unit length of the reach; ql is the lateral overland inflow
rate per unit length of the channel; il is the slope of the overland flow; nl is
the Manning’s roughness coefficient for slope; m is equal to 5/3.
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Equations (8) and (9) were used instead of the quasi two-dimensional
description of the overland flow used previously Gelfan (2010) in order to
make simulations more computationally fast. Overland flow is the main
mechanism of water inflow to the Yasenok Creek; subsurface contribution is
negligible, so it is not considered in the model. To simulate channel flow, the
one-dimensional kinematic wave equation is applied.
The procedure used for the assessment of the soil parameters of Equations
(4) - (5) was described in (Gelfan, 2006) and illustrated, partially, by the
measurements in the Nizhnedevitskaya WBS; only the essence of the
parameterization procedure utilized in that paper is shown below. 
Parameters of the van Genuchten’s formulae for the hydraulic soil
properties, as well as of the formulae for the thermal conductivity and the
heat capacity of soil were calculated from their dependences on the
measurable soil characteristics (bulk density, porosity, field capacity, and
wilting point). Saturated hydraulic conductivity Ks and the coefficient KE
(Eq. 7) were adjusted through calibration against the measured soil moisture
profiles over 5 warm seasons, as well as measurements of soil evaporation.
In addition, the coefficient KE was refined with the use of the evaporation
measurements for the same seasons. The parameters of the snow model
(1) - (3) were adjusted through calibration against the available snow
measurements at the NWBS for 5 cold seasons. To test an ability of the
model (4) - (5) to reproduce the hydrothermal regime of a frozen soil during
the melt season, the measurements of the infiltration-excess overland flow,
which were carried out at bounded rectangular 100 m2 plots representing
sections of the watershed slope, were used. Runoff excess simulated for four
spring melt periods was compared satisfactorily with the observations. In
this study, snow and soil parameters were taken the same as found in Gelfan
(2006). The remaining 3 parameters (DET0, nl, and the Manning’s roughness
coefficient for channel, nr) were adjusted through calibration against
observed discharge in the Yasenok Creek for the period 1970-1974. In
Figure 5.3, the simulated hydrographs of snowmelt floods are compared
with those observed. Figure 5.3 shows that the model better reproduced
large floods than the small ones; however, generally the obtained results can
be interpreted as satisfactory: Nash and Sutcliffe’s (1970) efficiency
criterion Edischarge = 0.69. The complete list of the model parameters is
presented in Table 5.1. 
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The next step is to transfer the model developed for the proxy-basin
(Yasenok Creek) to the study basin (Sosna River) considered as an ungauged
basin. The transferring procedure is described below.  

Transferring the developed model to the study basin

In order to apply the developed model to the study basin, the latter was
schematized as a series of 91 rectangular reaches located along the main
channel and along the main tributaries and completely covered the
catchment area. Each reach is characterized by the set of the topography
parameters for simulation of overland flow by Equations (8) - (9). Hydraulic
constants of soil (porosity, density, field capacity, and wilting point) were
adopted from the catalog (Department of Hydrometeorological Service for
the Central-Chernozem Regions, 1975) containing data of measurements at
the agrometeorological stations located in the study basin. 
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Figure 5.3 Comparison of observed (bold line) and simulated hydrographs of snowmelt
floods in the Yasenok Creek.



Parameters of van Genuchten’s formulae were calculated from these soil
constants as before. The evaporation coefficient KE , as well as Manning’s
coefficients of roughness were assigned the same as obtained for the
proxy-basin. The other 4 parameters listed in Table 5.1 (the saturated
hydraulic conductivity, Ks, two snow parameters, namely the coefficients of
melt,  and snow evaporation, , and the mean value of the free storage
capacity, DET0) were assumed to be refined in comparison with their values
obtained for the proxy-basin.
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Table 5.1 Parameters of the model of runoff generation in the Yasenok Creek basin.



The procedure of the parameter refinement was designed as if no streamflow
data measurements are available in the Sosna River basin. The data sets used
for the refinement were obtained from the following sources: the
hydrometeorological archive of the World Data Centre in Obninsk, Russia
(http://www.meteo.ru/data_b/); the published materials of the field experiments
of SHI in the 1960s-1970s (Vershinina et al., 1985); and catalogue (Morduhy-
Boltovsky and Zubchenko, 1971). The archive, materials, and catalogue
summarize a vast amount of information on the Don River basin (where both
the Yasenok and Sosna basins are located), its physiographic peculiarities and
hydrological behavior, regionalized values of the hydrological characteristics,
etc. The data used included: (1) maximum SWE and maximum soil freezing
depth measured at four meteorological stations before the beginning of the melt
seasons for 25 years (1952-1976); (2) snow and soil freezing depths measured
once per 10 days at the Livny meteorological station for 17 years (1965-1981);
and (3) regionalized value of the long-term mean of snowmelt runoff obtained
by interpolation from the large-scale runoff maps presented in Morduhy-
Boltovsky and Zubchenko (1971). 
Initially, the snow model (Equations (1) - (3)) was calibrated against the
maximum SWE and snow depth data. Then the model of heat and moisture
transfer (Equations (4) - (5)) was calibrated against the freezing depth data;
the calibrated snow model was utilized to assign the upper boundary
conditions for Equations (4) - (5). In both cases, daily meteorological data
(air temperature and humidity, precipitation) measured at 4 meteorological
stations located within the study area were used for 30 years (1952-1981) as
the inputs into the models. The manual calibration procedure was used and
a search of the optimal parameter values was carried out within the intervals
specified a priori on the basis of the simulations in the proxy-basin.
In addition, to specify the intervals for Ks, the data of the field infiltration
experiments (Nazarov, 1970) made in the steppe-forest zone of European
Russia were utilized. As a result of the calibration, three aforementioned
parameters (Ks, , and ) were refined in comparison with ones obtained
for the proxy-basin. As an example, Figure 5.4 shows the maximum values
of SWE and freezing depth measured at the Livny station versus the
corresponding ones calculated under the following values of the refined
parameters: Ks (podzol) = 0.8x10-5 m s-1; Ks (chernozem) = 2.9x10-5 m s-1;
 = 0.1x10-9 m4 °C-1 kg-1 s-1; = 4.5x10-8 m hPa-1 s-1. Nash and Sutcliffe’s
(1970) efficiency of simulations of the maximum SWE and the maximum
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freezing depth equals ESWE = 0.92 and EFD = 0.80, respectively. The listed
values of the parameters were assumed as the final ones for the Sosna River
basin. 
Long-term (climatic) mean snowmelt runoff volume averaged over the Don
River basin (where the Sosna basin is located) is 75 mm (Morduhy-Boltovsky
and Zubchenko, 1971). This information was used for calibration of the
parameter DET0 that is one of two key-parameters controlling runoff losses
during a melt period (Ks is the second one). Snowmelt runoff volume for 30
years (1952-1981) was calculated by the model and the value of DET0 was
adjusted under the unchanged, listed above values of other parameters. Mean
30-year snowmelt runoff of 75 mm was calculated under DET0 = 0.014 m.
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Figure 5.4 Calculated vs. observed values of maximum SWE (a) and soil freezing depth
(b) (Sosna River basin, meteorological station Livny, 1952-1976).



5.6 STOCHASTIC WEATHER GENERATOR FOR THE SOSNA RIVER
BASIN

The weather generator (WG) is a set of stochastic models that use existing
weather records to produce long series of synthetic daily weather variables,
for which statistical properties are expected to be similar to those of the
actual data. The WG used includes stochastic models of daily precipitation,
air temperature, and the air humidity deficit. To represent the tendency of
wet or dry weather spells to persist, the widely used two-state, first-order
Markov chain was applied. Daily precipitation amount was considered as a
gamma distributed random variable with different parameters for the cold
season and the warm season. For the dry spell, the average air humidity
deficit is considered as a lognormal variable; for the wet spell, the air
humidity deficit was set equal to zero. In order to simulate the daily air
temperature occurrences, the method of fragments (Srikanthan and
McMahon, 1985) was applied. 
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Table 5.2 Stochastic weather generator parameters estimated by the long-term
meteorological observations in the Sosna River basin (standard deviations of the
estimations are shown in brackets).



Time series of daily precipitation, air temperature, and humidity deficit
observed in the Livny meteorological station located at the Sosna catchment
for 54 years from 1949 to 2005 (3 years containing long periods of missed
data were removed) were utilized for estimating the parameters of the
developed stochastic models on mean areal basis. Parameters of the
precipitation model were estimated by the methods presented by Katz
(1977). Parameters of the air temperature and humidity models are estimated
by the method of moments. The complete list of the weather generator
parameters is presented in Table 5.2. 
The stochastic models were comprehensively tested through their ability to
reproduce the main features of meteorological processes at the Sosna River
basin. For testing, only those characteristics of the observed and simulated time
series which are neither the parameters of the models nor a single-valued
function of the parameters were compared. The following characteristics of the
observed and simulated time series of precipitation were compared: histograms
of wet and dry spell durations, autocorrelation functions of precipitation
occurrence and daily precipitation series, variance of precipitation sum for 30
and 365 successive days, and distribution of maximum daily precipitation for
30 and 365 successive days. For the model of air temperature we tested how
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Figure 5.5 Frequency histograms of the observed (gray columns) and calculated (striped
columns) characteristics of precipitation: (a) - duration of a wet-day sequence;
(b) - duration of a dry-day sequence; (c) - annual maximum of daily precipitation;
(d) - daily precipitation.



the model reproduces mean value and variance of air temperature for 30
successive days and autocorrelation function of temperature time series.
Histograms of mean air humidity deficit for dry spell intervals of different
duration were compared for testing the model of air humidity deficit. Some
results demonstrating comparison between statistical properties of the observed
and simulated precipitation series are shown in Figure 5.5.

5.7 ASSESSING PROBABILITY DISTRIBUTION OF SNOWMELT
FLOOD CHARACTERISTICS FOR THE PSEUDO-UNGAUGED
BASIN

The dynamic-stochastic model consisting of the runoff generation model
and the stochastic weather generator described in sections 5.4, and 5.5,
respectively, is applied to the assessment of flood frequency in the pseudo-
ungauged Sosna River basin. 
Five thousand weather scenarios were Monte Carlo generated (hereafter, the
weather scenario is determined as the 1-year, from May 1 to April 30, time
series of daily generated meteorological data) (Gelfan, 2010). The weather
scenario was used as an input into the hydrological model to simulate a
single snowmelt flood hydrograph, i.e. each simulated hydrograph was in
accordance with the respective weather scenario. Thus, the series of 5000
hydrographs of snowmelt flood were simulated at first by the model
parameterized without using streamflow data measurements. The assessed
exceedance probabilities of flood volume and peak discharge were
calculated from the series and are shown in Figure 5.6a, b, respectively. 
In order to estimate the accuracy of the assessments we need “to remember”
the available runoff data in the Sosna River basin which we ignored so far.
So, the exceedance probabilities assessed from the artificial hydrograph
series are compared in Figure 5.6a, b with the probabilities of the available
61-year series of the observed flood volume (1927-1989) and the 49-year
series of the observed peak discharges (1936-1989). Statistical characteristics
of the simulated and the observed series are compared in Table 5.3.
Flood volume statistics are satisfactorily reproduced by the dynamic-
stochastic model as it follows from Figure 5.6a and Table 5.3 and,
importantly, this result was obtained without use of the streamflow data
measurements. At the same time, the model overestimates both mean peak
discharge and its year-to-year variation. 
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Inaccuracy in reproduction of the flood peak discharge statistics is caused by
the errors in the roughness parameters, which were transposed from the
proxy-basin as are, without any refinement through the local calibration. Let
us assume now that we have a few observed values of annual peak discharge
in the study basin and use these data for adjustment of Manning’s roughness
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Figure 5.6 Exceedance probabilities of the observed snowmelt floods (open circles) and
ones simulated (solid circles) without use of streamflow data for the model
calibration: (a) - flood volume, (b) - flood peak discharge.



coefficients for channel and overland flow. The coefficients were adjusted
through the kinematic wave model calibration against annual flood peak
discharge data for the period of 1965-1974. The adjusted coefficients turned
to be equal to 0.17 s m-1/3 for overland flow and 0.07 s m-1/3 for channel flow.
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Table 5.3 Statistical characteristics of the measured and calculated flood characteristics of
the Sosna River.

Figure 5.7 Simulated vs. observed flood peak discharge at the Sosna River basin: open
circles – roughness parameters are transferred from the proxy-basin;
solid circles – roughness parameters are refined through calibration against
10 observed values of annual peak discharge in the Sosna River basin.



Figure 5.7 shows flood peak discharge calculated before and after the
calibration procedure versus the observed discharges. The refinement of the
parameter values in comparison with ones obtained for the proxy-basin has
lead to removing positive bias in the peak discharge simulations (Figure 5.7). 
Five thousand generated weather scenarios were used once again as the
inputs into the model with the refined parameters of roughness. The
exceedance probabilities of flood peak discharge assessed from the
simulated 5000-year hydrograph series are compared in Figure 5.8 with the
corresponding probabilities obtained from 49-year observations. 
Comparison of Figure 5.8 with Figure 5.6b suggests that use of even a
relatively short series of the hydrograph observations to calibrate the
parameters improved the simulation results regarding estimates of both
mean peak discharge and its year-to-year variation. Mean flood peak
discharge was found to be 1767 m3s-1, while the coefficient of variation
equals 0.64. Comparing these values with those in Table 5.3, the calibration
error of the mean value was reduced from 15% to 2% and error of
coefficient of variation was reduced from 13% to 6%. 
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Figure 5.8 Exceedance probabilities of the observed peak flood discharge (open circles) and
the probabilities of the discharge simulated by the calibrated model (solid
circles).



5.8 CONCLUSION

Hydrological models are widely recognized as the main tool for prediction
of streamflow time series from meteorological data and are used for a huge
range of scientific and engineering applications. Applicability of models is
dramatically reduced when the basin in question is ungauged, i.e. there are
no past streamflow observations, so the model parameters can not be
adjusted through calibration against streamflow data. In this case, as well as
in the cases of poorly gauged basins and virtually ungauged ones (when the
available observation series are inhomogeneous because of the changes that
occurred), data-based models become inapplicable. Kuchment and Gelfan
(2009) argued that the physical foundation of the model, particularly,
a priori information, reflecting accumulated knowledge on runoff
generation mechanisms in the basin under consideration, can compensate, to
some extent, for the lack of homogeneous streamflow observation data.
Kuchment and Gelfan (2009) suggested a methodology of assessing the
parameters of the physically based model from both the observations in the
hydrologically similar proxy-basin and the observations in the poorly
gauged study basin. They then concluded that 3-4 years of streamflow
observations in the poorly gauged basin are enough for obtaining stable
results of hydrograph simulation by the model used in the study.
The methodological approach developed by Kuchment and Gelfan (2009)
was extended here and applied for the classical problem of the engineering
design –  flood risk assessment in a poorly gauged basin; this is among the
most crucial problems of putting the PUB-decade achievements into the
practice. 
The essence of the approach suggested in this paper is the following. In
order to assess extreme snowmelt flood magnitude and frequency in a study
basin where streamflow data are assumed to be unavailable, a data-rich
small proxy-basin which is hydrologically similar to the study basin is
selected. A physically based model of snowmelt flood generation was
developed for the proxy-basin and then “transposed” to the study basin.
Thereafter, some key parameters of the model were refined by the use of the
snow and soil freezing survey data available for the study basin. At last, the
deterministic hydrological model was linked to the developed stochastic
weather generator and forced by the long series of the artificial
meteorological data simulated by this generator. As a result of the applied
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dynamic-stochastic approach, multi-year hydrograph series were calculated
and the exceedance probability curves for flood volume and peak discharge
were constructed for the study basin without using any streamflow data. It
was found that flood volume statistics (mean and coefficient of variation)
were satisfactory reproduced by the applied approach but the corresponding
statistics of flood peak discharge were overestimated. In order to remove the
detected bias, we had to adjust flow roughness parameters of the model
through its calibration against annual peak discharge values registered for
the 10-year period of observations. 
After calibration of the model, both the calculated mean value and variance
of the annual flood peak discharge turned much closer to the corresponding
values obtained from the long-term observations: error of mean value
reduced from 15% to 2%, error of coefficient of variation reduced from 13%
to 6%. One can consider this approach as a suitable alternative to the
traditional engineering methods of flood risk assessment in the ungauged or
poorly gauged basins. 
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CHOOSING AND ASSIMILATING FORCING DATA FOR
HYDROLOGICAL PREDICTION

David C. Garen1
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6.1 ABSTRACT

Developing meteorological forcing data for input to hydrological models is
an essential first step in modelling and prediction, whether for gauged or
ungauged basins. The most common source of forcing data is meteorological
stations. There are different constraints on station selection depending on the
purpose of the modelling, whether the simulation is for model
experimentation and testing, estimating hydrograph changes due to
watershed or climate changes, or real-time streamflow forecasting.
Considerations in station selection include data quality, timeliness, and
spatial representativeness. Real-time forecasting poses particularly stringent
requirements of station data timeliness and quality. To use station data as
model input, they must be spatially interpolated over the watershed. One
useful technique to do this is elevationally detrended kriging, which involves
computing relationships of meteorological quantities (specifically
precipitation and temperature) with elevation to describe vertical variability,
subtracting this from the data to obtain residuals, then applying ordinary
kriging to describe horizontal variability. The interpolation produces spatial
(i.e., gridded) fields of precipitation and temperature at a daily or smaller
time step, which can then be input directly to fully distributed hydrological
models, or they can be averaged over the watershed or sub-areas thereof for
lumped or semi-distributed models. Other interpolation techniques are
usually required for other meteorological variables due to insufficient
stations being available or due to the physical characteristics of the quantity
not lending themselves to a kriging type of spatial interpolation (e.g. wind).
Although preparation of forcing data can require significant database and
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software infrastructure, especially for real-time forecasting, any hydrological
modelling exercise must begin with good forcing data. In ungauged basins,
without streamflow measurements to use as a check on simulation skill, it is
especially critical to ensure that model forcings are accurately prepared.

6.2 RÉSUMÉ

La création de données de forçage météorologique comme données d’entrée
dans les modèles hydrologiques constitue un premier pas essentiel dans la
modélisation et la prévision, que ce soit pour les bassins jaugés ou les bassins
non jaugés. Les stations météorologiques constituent la source la plus courante
de données de forçage. Il existe différentes contraintes quant au choix de la
station suivant le but de la modélisation, selon que la simulation soit faite à des
fins d’expérimentation de modèle et d’essais, d’estimation des changements
hydrographiques en raison de changements climatiques ou au niveau du bassin
ou de prévision des débits en temps réel. Les facteurs à considérer dans le choix
d’une station englobent la qualité des données, la rapidité de production des
données et la représentativité spatiale. La prévision en temps réel pose des
exigences particulièrement rigoureuses en fait de qualité et de rapidité de
production des données de la station. Pour que l’on puisse se servir des données
de la station en tant que données d’entrée du modèle, celles-ci doivent être
interpolées spatialement à l’échelle du bassin hydrographique. Un moyen utile
pour y arriver est d’employer la méthode du krigeage avec modèle de tendance,
qui suppose le calcul des relations des quantités météorologiques (en particulier
les précipitations et la température) avec recours à l’altitude pour décrire la
variabilité verticale, en soustrayant ces valeurs des données en vue d’obtenir
des données résiduelles, puis en appliquant le krigeage ordinaire pour décrire
la variabilité horizontale. L’interpolation produit des champs spatiaux (c. à-d.
sur une grille) de précipitations et de température à un intervalle de temps
quotidien ou plus petit, qui peuvent ensuite être entrés directement dans les
modèles hydrologiques entièrement distribués. Il est également possible d’en
établir la moyenne en fonction de l’ensemble du bassin ou de certaines de ses
sous-zones pour des modèles localisés ou semi-distribués. D’autres techniques
d’interpolation sont habituellement nécessaires pour d’autres variables
météorologiques en raison d’un nombre insuffisant de stations disponibles ou
du fait des caractéristiques physiques de la quantité qui ne se prêtent pas à une
interpolation spatiale par krigeage (p. ex. le vent). Bien que la préparation des
données de forçage exige parfois une infrastructure logicielle et des bases de

90

Putting Prediction in Ungauged Basins into Practice Garen



données considérables, en particulier pour la prévision en temps réel, tout
exercice de modélisation hydrologique doit commencer par de bonnes données
de forçage. Dans les bassins non jaugés, sans mesures de débit à utiliser pour
la vérification des compétences liées à la simulation, il est particulièrement
essentiel de veiller à ce que les forçages de modèle soient préparés avec
exactitude.

6.3 INTRODUCTION 

An initial step of fundamental importance in hydrological prediction is
developing the meteorological forcing data to be used as model input. Even
if the stream to be modelled and predicted is ungauged, forcing data must
still be used to define the system inputs. Without good inputs, either due to
the lack of sufficient meteorological stations or due to poor processing and
utilization of the station data available, one cannot expect to achieve
accurate predictions. Good estimates of inputs, therefore, are essential to the
success and usefulness of any system simulation exercise.
In most hydrological modelling applications, forcing data are taken from
measurements at meteorological stations. While there are some examples of
the use of forcings from radar, remote sensing, or atmospheric modelling
(e.g., Mahfouf et al., 2007; Pietroniro et al., 2007), these are not yet common
and, in some regions of high spatial variability (e.g., mountainous areas), not
yet feasible. Issues relating to the use of station data in hydrological
modelling, then, are of central importance. These issues include data quality,
timeliness, spatial representativeness, and spatial interpolation.
These issues often do not receive thorough attention in hydrological model
documentation and user manuals, giving the hydrologist rather incomplete
immediately available guidance. Data quality, timeliness, and spatial
representativeness are generally not addressed explicitly, presumably assuming
that the hydrologist has already done a screening of stations based on these
considerations and knows how to do so. Regarding spatial interpolation,
sometimes models provide built-in methods for interpolating / extrapolating /
averaging station data to model spatial computational units, but these tend to be
very simple or based on certain assumptions about the station network that may
or may not be valid (e.g., Anderson, 1973; Leavesley et al., 1983). For
example, some built-in techniques either compute a weighted average or make
a one-to-one assignment of stations to the model spatial computational units
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and/or require the specification of (time-invariant) elevation lapse rates (for
either precipitation or temperature). Such a technique could be appropriate in a
given basin, or it may be excessively rigid, incomplete, or oversimplified.
Sometimes, models offer little flexibility in how the forcings are to be prepared,
requiring the selection of one of the built-in methods rather than allowing the
user to prepare forcings in any way desired external to the model in a pre-
processing step and then supplying them to the model as input. The latter, of
course, would allow the user to tailor the processing of station data into
forcings for model spatial computational units, but it does put more burden on
the user to have an appropriate technique at hand. In any case, the user should
pay very close attention to how the station data are utilized so as to be
conscious of how the forcings are prepared rather than uncritically choosing
some pre-existing technique offering simply because it is convenient.
This paper presents some thoughts, ideas, considerations, and techniques for
using station data in hydrological modelling and prediction. These topics
apply equally to gauged and ungauged basins.

6.4 DATA REQUIREMENTS FOR DIFFERENT TYPES OF
PREDICTION AND MODELS

Hydrological prediction can have different meanings. Three categories of
what might be considered “prediction” would be: (1) Simulating the
hydrograph to reproduce it as best as possible (e.g. comparing the accuracies
of different models or calibrations thereof); (2) Estimating changes in the
hydrograph due to past or anticipated watershed or climate changes; and
(3) Real-time streamflow forecasting. All of these applications require forcing
data, although there are some differences in the constraints in station usage for
each application. Note that while these types of prediction are typically made
in gauged basins (allowing model calibration and prediction verification), the
same need exists in ungauged basins for high-quality forcings, for without
this, neither of the two settings will produce successful results.
There are different types of models that can be applied for these prediction
categories. The primary distinction to be made here is between statistical
models and continuous process simulation models. Statistical (or empirical)
models are often regression-based, such as those commonly used for long-
range streamflow volume forecasts (e.g. Garen, 1992), although they could
also include, for example, neural network models, where physical
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hydrological processes are not explicitly represented in the model structure.
Process simulation models, in contrast, operate on a daily or shorter time
step and have mathematical representations of a greater or lesser level of
detail to represent the major hydrological water storages and fluxes that
affect the flow of water into and out of the watershed.
For statistical models, the station data requirements are less stringent than
for process simulation models. For the former, station data need only be
good indices of the target flow to be predicted; absolute magnitudes of
measured quantities do not have to be correct but only need to have a
consistent relationship with the target. On the other hand, for process
simulation models, the station data have to have accurate measurements in
terms of absolute amounts so that the inputs to the watershed (mass and
energy) are quantitatively correct. This is a much more demanding
requirement than just being a consistent index.
Another difference is that for statistical models, not necessarily all stations
must or even should be used. Optimization algorithms are often applied to
search for combinations of predictor stations that minimize forecast error.
Not all stations are necessarily required to minimize the error. In contrast, all
stations, except anomalous ones with unrepresentative microclimate effects
(Figure 6.1), would generally be used to define the input (e.g., precipitation,
temperature) fields for process simulation models. The example shown in
Figure 6.1 illustrates the importance of understanding the spatial variability
of precipitation and temperature, determining if the available stations are
capable of representing them, and recognizing (and perhaps excluding)
stations that are not spatially representative.
An important consideration in streamflow forecasting is the real-time
availability of station data. For research-mode studies, such as historical
simulation or impact assessment studies, real-time station data availability is
not an issue, and any stations with sufficient data can be used. This might
also include discontinued stations. For forecasting, however, a more
stringent data availability criterion must be applied. It does the forecaster no
good to use stations in the model forcing data setup that will not be available
when they are needed in forecast mode. For forecasting, then, forcing fields
and model calibrations should be based only on those stations that will
actually be available and usable in real-time. This places a limitation on the
stations that can be selected.
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Data quality and continuity is also important in all applications, although
perhaps more critically in real-time forecasting. This issue manifests itself
most commonly in missing values. It is troublesome to try to use a station in
research simulation studies that has many missing values, as these must either
be filled in with estimates, excluded from calculating forcing fields when
missing, or the station not used at all. For real-time forecasting, these issues
exist as well, but missing value detection and estimation also have to be done
in real-time via an automated process for expediency and timeliness.
In fact, automated processing for input data preparation in real-time forecasting
is a major requirement. Automated processing includes the following activities
that must be done unattended: data retrieval from sources; data quality checks;
estimation of missing data (could be optional depending on model setups); pre-
processing (such as spatial interpolation); and formatting for model input.
Human review of the results of this automated processing is also advisable. The
rapid and automated execution of these functions is a non-trivial task requiring
much database and software infrastructure.
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Sprague Basin Precipitation, Water Year 2004
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Figure 6.1 Precipitation-elevation relationship for annual total precipitation in water year 2004
at meteorological stations in the watershed of the Sprague River in southern
Oregon, USA. Deciding whether the anomalous station lying far above the
regression line should be used for spatial interpolation of precipitation fields
requires some investigation regarding the spatial representativeness of this station.



6.5 SPATIAL INTERPOLATION

The use of station data for hydrological model application leads immediately
to a spatial interpolation task of generalizing meteorological station data
collected at a point scale to the spatial domain of a watershed. There are many
ways to do this, some simple and some complex, and the technique used
depends to a large degree on the number of stations available and the
characteristics of the quantity being interpolated. Although some simple
station weighting and averaging techniques are sometimes offered in
hydrological models, more modern and complete techniques are available.
One general spatial interpolation technique that has found widespread usage
in hydrology and other fields in recent years is the geostatistical procedure
called kriging. Kriging is essentially a station weighting scheme. An estimate
of a quantity at a spatial location is a weighted sum of the measurements at
stations in its vicinity. The station weights are determined for each spatial
location (most commonly grid cells in a geographic information system) in
the domain to be interpolated via the kriging algorithm. The weights are a
function of distance and the spatial correlation structure of the variable as
represented by the semivariogram, which describes how the difference
between values of the quantity at two spatial locations increases with distance
between the locations (which is equivalent to, but the inverse of, a spatial
correlation function, which decreases with distance). The station weights are
greater for the nearest stations and smaller for the more distant stations, with
the station weights summing to 1.
There are many flavours and variations of kriging, depending on specific
characteristics of the data to be interpolated. One of the main issues is whether
the data exhibit systematic trends in space related to a geographical
characteristic, such as elevation or latitude and longitude. If this is the case,
these systematic trends must either be removed from the data before applying
the kriging algorithm, or the kriging framework must otherwise be designed
to account for this factor affecting the spatial distribution of the quantity.
Recent reviews and algorithm comparisons include Goovaerts (2000), Zhang
and Srinivasan (2009), Ly et al. (2011), Tobin et al. (2011), and Feki et al.
(2012). One such technique, elevationally detrended kriging, as applied to
precipitation and temperature data is described below. This technique is
highlighted here because it has been shown in the comparison studies to
perform well, is conceptually straightforward, and is operationally practicable.
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Garen and Marks (2005) selected this technique for use in snowpack
simulations after a review of previous literature on kriging techniques.
Elevationally detrended kriging (Garen et al., 1994) is appropriate where
elevation is the primary deterministic external factor affecting the behaviour
of a meteorological variable. This is the case for precipitation, which
generally increases with elevation due to orographic processes, and for
temperature, which decreases with elevation. Detrended kriging divides the
spatial variability of the meteorological quantity into two components:
vertical and horizontal. The vertical component is described by a linear
regression relationship of the quantity with elevation, which is subtracted
from the data. The horizontal component is described by ordinary kriging of
these detrended residuals.
The steps in the algorithm are shown in Figure 6.2. In this implementation
of detrended kriging, a simplification is made by using a linear
semivariogram. Doing so makes the kriging station weights invariant in time
because the weights are independent of the slope and intercept of the
semivariogram line. (Without this simplification, a separate semivariogram
would have to be specified for each time step, greatly increasing the
complexity and computational cost of the processing.) With the linear
semivariogram, the kriging station weight calculation is made for all grid
cells in the domain once at the beginning of the processing. From this point,
the algorithm enters a loop for each time step in the time series of data to be
interpolated. While a daily time step is common, shorter or longer time steps
can also be accommodated in the algorithm. The calculations for each time
step consist of: calculating the linear regression elevation relationship;
subtracting this from the data to obtain residuals; kriging of the residuals for
each grid cell in the domain; computing the deterministic elevational trend
at each grid cell; and, adding the deterministic trend to the kriged residual
for each grid cell to obtain the final interpolated field.
There are some implicit assumptions in this implementation. One is that the
domain to be interpolated has a relatively homogeneous precipitation and
temperature regime; for example, there are no strong orographic barriers
within the domain that would create very different elevation relationships for
different sub-areas. Another assumption is that the station density is sufficient
to give a reasonable representation of the essential vertical and horizontal
distribution of the precipitation and temperature fields. A final assumption is
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that the length and width of the spatial domain is moderate enough in size that
the spatial correlation structure is reasonably represented by a linear
semivariogram. This would imply that the domain to be interpolated should
be “mesoscale” in size, perhaps on the order of 100 to 10 000 km2.
Examples of interpolations of precipitation and temperature are given in
Figures 3 and 4. These figures show both the elevation detrending
relationship and the final interpolated field. In Figure 6.3, note that the
Silver Creek site, lying well above the detrending line, exerts a significant
influence on the interpolated precipitation in the northern part of the basin.
Its large positive detrending residual causes grid cells in its vicinity also to
have a large positive residual due to the kriging spatial interpolation,
resulting in these cells also having precipitation above that estimated for
their respective elevations by the detrending line. Similarly, the Gerber
Reservoir and Quartz Mountain sites lie well below the detrending line,
causing the kriging interpolation to calculate negative detrending residuals
for grid cells in their vicinity in the southern part of the basin, and leading
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Figure 6.2 Detrended kriging flowchart (DEM = digital elevation model).



to the final precipitation estimates being drier for their respective elevations
than estimated by the detrending line. In Figure 6.4, the detrending residuals
for temperature are smaller than for precipitation, so the influence of
positive or negative residuals are less noticeable, and the final interpolated
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temperature follows the elevation field quite closely. Nevertheless, the
residuals still have local influence, making the temperature estimates greater
or less than the estimates from the detrending line for the respective grid cell
elevations.
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The results of such interpolations, for each time step (e.g. day) in the historical
period to be simulated, can either be used directly as input to a fully distributed
hydrological simulation model (requiring grid-based inputs), or the whole
watershed or sub-areas thereof can be spatially averaged over the appropriate
grid cells and used as input for a spatially lumped or a semi-distributed model.
Note that the spatial interpolation process requires the hydrologist to consider
carefully the station representativeness and data quality issues mentioned
previously to ensure that the interpolation and the resulting model forcings are
the best that can be done with the available information.

6.6 CONCLUDING REMARKS

This discussion and these examples illustrate the major considerations in
selecting and interpolating data for the preparation of time series of
hydrological model forcings. Careful station selection, attention to data
quality, and the use of a robust and conceptually solid spatial interpolation
technique are all prerequisites for a successful hydrological modelling effort.
As demonstrated, some essential meteorological station data can be spatially
interpolated, but it must be remembered that the adequacy of the result is
strongly dependent on station density and spatial representativeness.
Precipitation and temperature are the easiest to interpolate; other
meteorological variables, such as humidity, wind, and solar radiation, do not
lend themselves as readily to the detrended kriging method due to sparse station
density and other deterministic geographical factors for these quantities, hence
other methods must be used if the model requires these additional variables
(Garen and Marks, 2005). In any case, the hydrologist must establish that the
station network can indeed support the preparation of adequate forcing data; if
not, then there is little reason to proceed with a modelling effort, as no system
can be simulated well without good estimates of the inputs.
Preparation of model forcings in a manner such as that described here gives
the hydrologist confidence in the appropriateness of the system inputs given
the station network and the terrain. The hydrologist can then trust the
forcings and look to other model components and parameters for refining
model skill. Whether in a gauged or ungauged basin, high-quality forcings
are essential. Indeed, in an ungauged basin, the forcings may take on even
greater importance than in a gauged basin, because there is no opportunity
to use streamflow observations as a check on the adequacy of the forcings.
In any case, it is evident that preparation of forcings is worth significant care
and effort as the first prerequisite for successful hydrological modelling.
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7.1 ABSTRACT

Hydrological ensemble forecasting is increasingly used in scientific and in
operational modes. Generally, a hydrological ensemble of forecasts is created
by forcing hydrologic models with meteorological ensemble forecast input or
by running multiple hydrological models; however, although the resulting
spaghetti plots provide some feeling of future variability, it may be difficult
to interpret except for experienced operational forecasters. Verification and
post-processing of either archived forecasts or hindcasts can be used to create
probabilistic forecasts that represent the predictive uncertainty of future
flows and are thus useable by decision makers. Useful techniques are
illustrated through a hindcast study of the operational flow forecasting
system of the River Rhine. The forecast horizon in combination with basin
characteristics such as size and travel time, determine the relative
contribution of different sources of uncertainty. Understanding these
dominant sources of uncertainty is crucial when using the probabilistic
forecast in informing a decision, both in gauged and ungauged basins. 

7.2 RÉSUMÉ

Les prévisions hydrologiques d’ensemble sont de plus en plus utilisées dans
les modes scientifiques et opérationnels. En général, un système de prévisions
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hydrologiques d’ensemble est créé en forçant les modèles hydrologiques à
l’aide de données d’entrée de prévisions météorologiques d’ensemble ou en
exécutant de multiples modèles hydrologiques. Cependant, même si les
schémas spaghetti qui en résultent donnent une idée approximative de la
variabilité future, ils peuvent être difficiles à interpréter sauf pour les
prévisionnistes opérationnels expérimentés. Il est possible d’avoir recours à
la vérification et au post-traitement soit des prévisions archivées, soit des
prévisions a posteriori afin de créer des prévisions probabilistes qui
représentent l’incertitude prédictive des débits futurs et dont les décideurs
peuvent par conséquent s’inspirer. Des techniques utiles sont illustrées au
moyen d’une étude de prévision a posteriori du système de prévision
opérationnelle des débits du Rhin. L’horizon de prévision, combiné aux
caractéristiques du bassin comme la taille et le temps de parcours,
déterminent l’apport relatif des différentes sources d’incertitude. La
compréhension de ces sources principales d’incertitude est cruciale lorsque
la prévision probabiliste sert à éclairer une décision, à la fois dans les bassins
jaugés et non jaugés. 

7.3 INTRODUCTION

Hydrological forecasts are used to mitigate damage due to flooding, but also
provide relevant information for various other purposes, including river
navigation, power plant management and water supply management.
Unfortunately, forecasts of future water levels or discharges can be quite
uncertain and in some cases the cost of taking action in response to a
warning in comparison to the loss avoided that the cost of false alarms may
be more expensive than when no warning is provided at all (Verkade and
Werner, 2011). Not only does the uncertainty inherent in hydrological
modelling contribute to uncertainty in the forecast, to a large degree
meteorological conditions of the (recent) past, present, and especially future
also carry significant uncertainty; however, both hydrological and
meteorological models are improving, and increasingly provide forecasts
that are acceptably close to observations. Despite this, these forecasts will
always have some uncertainty, and the confidence in a prediction should be
expressed with a probability. With this information a risk based decision
using the probability of the predicted event can be made by a decision maker
based on a deterministic forecast, rather than the forecaster making the
decision (Weerts et al., 2011). 
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Ensemble forecasting is a technology to assess the variability of predictions
in future conditions by sampling of the probabilities of the most relevant
sources of uncertainty. A first step is to identify these sources, defining the
locations, variables, and more importantly the lead time (i.e. the forecast
horizon) of the forecast. Generally, the uncertainty within the model and the
present conditions dominate the forecast uncertainty for short lead times,
while for longer lead times the future meteorological conditions tend to
dominate (Werner et al., 2005). The knowledge of the relevant sources of
uncertainty and their relative contribution at different lead times will help
the forecaster interpret the (probabilistic) information, and thus lead to
reducing the forecast decision uncertainty (Nester et al., 2012) . 
Regarding the larger lead times (medium range forecasts) it has been
demonstrated that meteorological ensemble forecast products are very useful
inputs for hydrological models (Roulin, 2007). These numerical weather
prediction products are globally available and provide fields of precipitation,
temperature, and other meteorological variables (Molteni et al., 1996;
Bartholmes and Todini, 2005). ). Such global resolution ensemble numerical
weather prediction products should, however, be downscaled according to
the size, topography, and model resolution of the forecasting basin (Renner
et al., 2009). For short lead times, it can be useful to run an ensemble of
models resulting from sampling from probability distributions of e.g.,
parameter distributions of a hydrologic model (Kuczera and Parent, 1998),
the observed meteorological inputs (Vrugt et al., 2008), or to run different
hydrological models (multi-model ensemble) (Georgakakos et al., 2004;
Velázquez et al., 2011), or use additional observations fed into the forecasting
chain through a data assimilation procedure (Weerts and El Serafy, 2006;
Weerts et al., 2010). Combining all these sources of uncertainty into the
forecast chain can be computationally demanding, however, and does not
necessarily improve forecast accuracy (Velázquez et al., 2011). 
If an ensemble is expected to be a good representation of the predictive
uncertainty (Wilks, 2006; Krzysztofowicz, 2002), then this implies that the
ensemble is drawn from the same distribution as the true uncertainties.
Having a set of forecasts and observations, these assumptions can be
checked and the accuracy of the forecast assessed. Where an archive of
operational forecasts is not available, a set of hindcast runs could be
considered. Further, the knowledge of specifically the bias in the mean and
the variability of past forecasts that is gained can be used to calibrate new
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forecasts. This is referred to as post-processing, giving a statistical means to
objectively judge forecasts based on previous performance. 
Hydrological forecasts for ungauged catchments provide further challenges
because the lack of data to calibrate hydrological models and to verify
forecasts adds significant uncertainty. Generally, model parameters are taken
from similar catchments or these are derived by regression approaches
linking catchment properties with model parameters (e.g. Merz and Blöschl,
2004). Thereby, the use of distributed hydrological models seems to
outperform simulations with conceptual model approaches for ungauged
catchments (Reed et al., 2007). While the uncertainty of hydrological models
can change with the respective known or unknown properties of a catchment,
the uncertainty of meteorological forecasts can be considered rather
independent. Ensemble flow forecasts of hydrological models forced with
meteorological ensembles can provide essential information on the expected
forecast discharge variability even in ungauged basins. 
The purpose of this paper is to address three questions: 

1. How can the relevant sources of uncertainty of flow forecasts for a
given forecast horizon and different basin properties be identified? 

2. How can the accuracy and skill of an ensemble prediction be
assessed? 

3. How can ensemble forecasts using post-processing methods be
improved? 

The operational flow forecasting system of the River Rhine is used to
illustrate how an ensemble prediction system can be set up to generate an
archive of forecasts through hindcasting. The Rhine basin is a reasonably
well gauged basin and the results of the verification of ensemble flow
forecasts comprise many different sub-catchments, with different sizes,
hydrological regimes, and rainfall runoff characteristics. Then the potential
of the ensemble flow forecasting method for ungauged basins is discussed.
In particular, the most important catchment properties are highlighted for the
purpose of transferring verification metrics to ungauged basins.
The paper is structured as follows. First the operational forecasting suite of
the River Rhine is presented. Then useful statistical forecast verification
methods to assess the accuracy of ensemble forecasts are reviewed.
Different sources of uncertainty dominate the forecast accuracy, and how
forecasts can be improved at various catchment scales using post-processing
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methods is demonstrated. Finally, recommendations for improving
hydrological forecasts in ungauged basins are provided. 

7.4 CASE STUDY: MEDIUM RANGE FLOW FORECASTING AT
RIVER RHINE

The River Rhine is the third largest river (1 233 km long, 170 000 km2) in
Europe; in economic terms it is the most important river and waterway in
Europe. Data from an operational forecast system that provides short to
medium range forecast with a lead time from 2 to 10 days is used as an
example in forecasting flood levels, and for low water levels for river
navigation, where forecasts are used by ship captains to plan loading and
travel routes. Figure 7.1 displays the basin boundaries, the main rivers, and
primary forecast locations used for verification and post-processing. 
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Forecast and model set up 

The operational flow forecasting system is embedded in the data
management environment Delft-Flood Early Warning System (FEWS),
(Werner et al., 2013). This system serves to assist the forecasting
departments of the Federal Institute of Hydrology (Bundesanstalt für
Gewässerkunde - BfG) in Koblenz, Germany as well as the Centre for Water
Management of Rijkswaterstaat, The Netherlands. A reduced forecasting
scheme is used, consisting of the conceptual hydrological HBV-96 model
(Bergström, 1995), which has been set up and calibrated for the 134 sub-
basins (Eberle et al., 2005). The sub-basins are connected by a simple
routing routine. For the purpose of this study, the detailed hydrodynamic
routing models used to predict levels are not considered due to
computational constraints. Forecast results are primarily evaluated in terms
of discharge accuracy. 
In historical simulation mode, the model is forced with observed, i.e.
spatially interpolated fields of precipitation and temperature (Figure 7.2). In
forecast mode, the model is forced with meteorological forecast products. In
the case of ensembles, the HBV model is run for each ensemble member,
which results in an ensemble flow forecast. The results of such a forecast run
can be seen in the spaghetti plot of simulations in Figure 7.2. 
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Hindcast set up

Because an archive of ensemble flow forecasts from the operational forecast
was not available, a hindcast study was conducted. For this purpose a
baseline simulation forcing HBV with observed meteorological inputs was
performed. Daily hindcasts, where HBV is forced with meteorological
forecasts using the initial conditions of the baseline simulation, were run.
The ensemble product of the European Center for Medium Range Forecasts
(ECMWF EPS), a global circulation model (GCM) with a resolution of
approximately 50 km and 51 ensemble members was used. The hindcast
period consisted of more than 1000 daily forecasts over the period June
2004 to October 2007. The system is described in detail in Renner et al.
(2009) and references therein. 

7.5 ENSEMBLE FORECAST VERIFICATION

Forecast verification is concerned with the question of how well do the
forecasts agree with observed data? Verification is essential to improve
forecasts and provides metrics to compare forecast performance over
different locations. The verification methods reviewed here are widely
applied in meteorology (Wilks, 2006), and these can be extended to
hydrological forecasting. There is, however, some need to adapt these for
hydrological predictions. Here verification measures useful to hydrological
forecasting are presented, and it is illustrated how ensemble forecasts are
transformed to actually compute the selected verification measures. 

A scalar accuracy measure

A single ensemble flow forecast including observations over time is shown
in Figure 7.3. The forecast is based on a hydrologic simulation with
meteorological inputs. The grey bold line depicts the simulation being
forced by observed meteorological inputs. After the start of the forecast at
time t0 (vertical dashed line) the model is forced with meteorological
ensemble forecasts. Further, knowing the difference of simulation and
observation (black dots), the resulting hydrological ensemble forecast (grey
thin lines) is corrected using a simple Auto-Regressive (AR) error model,
such that the forecast continues the observation. This has shown to improve
forecast accuracy at short lead times (Broersen and Weerts, 2005). 
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Usually the forecast accuracy is estimated at a predefined lead time (vertical
dashed line in Figure 7.3) from a set of ensemble forecasts. This disregards
any information of the shape of the hydrograph of each ensemble member.
A further reduction is done when computing the mean absolute error MAE
of a set of n forecasts (yi) and observations (oi): 

(1)

Here yi is a deterministic forecast issued at day i for some lead time. In the
case of ensembles, the ensemble mean and sometimes the median is used;
however, this deterministic score does not consider the ensemble spread.

Verification Rank Histogram

For the assessment of the ensemble spread and its reliability, the visual
measure of the rank histogram, (a Talagrand Histogram) is useful (Hamill,
2001). It addresses the question, “is the ensemble drawn from the same
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distribution as the predictive uncertainty” (Wilks, 2006). The rank histogram
is constructed by sorting a single ensemble forecast (such as the one shown
in Figure 3) and the respective observation in order of their value. Then the
rank of the observation within the ensemble is computed, as shown by the
black bar in Figure 7.4a. Repeating this step for a set of forecasts, one can
construct a histogram of these ranks, as shown in Figure 7.4b. If the
ensemble characterizes the uncertainty well, then all ranks would occur at
the same frequency, resulting in a uniform histogram, which is an indication
of a reliable ensemble forecast. The example shown in the right panel of
Figure 7.4 displays frequent very low and high ranks and thus indicates that
the ensemble forecast does not show enough spread, because in the example
shown the whole ensemble was either above or below the observation most
of the time. An analogue method for probabilistic forecasts is also available,
the probability integral transform (PIT) (Casella and Berger, 1990; Gneiting
et al., 2007), which is interpreted similarly. 

There are many ways to interpret ensemble forecasts and thus many suitable
probabilistic verification scores. Common transformations are threshold
scores where the exceedance of some predefined threshold is evaluated.
Examples are the Brier score (Brier, 1950), the reliability diagram or the
Receiver Operating Characteristic; Wilks (2006) provides an overview.
Threshold scores are highly relevant for assessing the forecast accuracy at
warning thresholds, such as the exceedance of a water level resulting in
inundation. Although important in flood warning, the evaluation of such
thresholds is statistically problematic, given that the thresholds that are
interesting typically represent extreme events, which means the sample size
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is generally too small. This could be improved by assessing lower, more
frequent thresholds, but the performance at these low thresholds may not be
representative of that at the higher thresholds. 

7.6 DOMINANT SOURCES OF UNCERTAINTY

It is common sense, that predictions are more uncertain with increasing
forecast horizon because as lead time increases future meteorological
conditions will increasingly dominate the forecast. In larger river basins,
such as the lower Rhine, however, we can assume that most of the water in
the river that will pass a downstream forecast point in the coming days has
already been observed as precipitation, melted snow, or observed flow. Thus
that water is already in the system and therefore, the observed model states
and the simulation model are highly relevant for the predictive uncertainty.
Through this analysis the simulation uncertainty representing water which is
already in the system at the onset of the forecast can be distinguished from
the meteorological forecast uncertainty, which reflects all water that will
enter the system after the start of the forecast (Werner et al., 2005). 
The current set up of the forecasting suite allows an estimate of the
contribution of both types of uncertainty to the resulting forecast.
Comparing a forecast (with error correction) with the observation includes
both the uncertainty of the meteorological forcing and of the model, while
comparing the forecast (without error correction) with the simulation only
includes the meteorological forecast uncertainty. Computing the ratio of
both errors:

(2)

yields a measure of the relative contribution of the meteorological forecast
error on the total error. Here, a value of zero means no contribution and a
value of 1 full contribution. This ratio is shown in Figure 7.5 for 10 different
river gauging stations on the Rhine and its tributaries ranging from 900 km2

to 160 000 km2. Clearly, the relative contribution increases with lead time,
but there are distinct differences in the different (tributary) river basins. 
The three small basins located in the hilly North of the Rhine basin (forecast
points at Altenahr, Grolsheim, and Hattingen) show similar behaviour. After
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a lead time of only two days, the future meteorological conditions already
introduce 50% of the total uncertainty and then approach about 80% at 10
days lead time. For larger river basins (> 12 000 km2) the increase is less
steep and reaches 50% contribution between 4 to 6 days lead time. There are
three remarkable deviations from this expected behaviour, each of which
can be attributed to the respective basin characteristics. 
The first is the river gauge at Rheinfelden, which is located on the Swiss-
German border, at the outlet of the Alpine part of the basin. Here the
contribution to the error of the meteorological forecast rises quickly to about
40% percent in two days lead time, but then rises markedly slower to only
60% after ten days. This may be attributed to the quick response of the Aare
tributary (about 50% of the total flow at Rheinfelden) and the slow response
due to the large lakes upstream, especially Lake Bodensee. 
The second interesting station is Lobith at the border between the Netherlands
and Germany. There is almost no contribution of meteorological forecast
uncertainty up to 2 days lead time. That means for lead times smaller than
2 days there is no reason to use meteorological forecasts as input; however, at
higher lead times the contribution increases with a larger slope than at
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comparable, but small river stations. This behaviour is eventually caused by
the large uncertainty in tributaries close to the river gauge. So, while one part
of the water in the system has already been observed, a significant part of the
water originating in the meteorological forecast may have entered the system. 
The last anomalous station is Raunheim on the Main tributary, where the
contribution increases linearly with time. Two reasons for this behaviour are
suspected: (a) water level regulation for navigation resulting in controlled
streamflow, and (b) inaccurate streamflow measurements due to backwater
effects (computed by water levels and a rating curve). 
To summarize, the expected behaviour with increasing contribution of
meteorological forecast uncertainty to the total prediction uncertainty with
lead time was generally observed. Basin characteristics such as basin size
and travel time estimates can be used to regionalize the meteorological
uncertainty. A simple linear regression model shows that the lead time at
which 40% of the error is due to meteorological forecast uncertainty can be
predicted by the logarithm of the basin area with an explained variance of
R² = 0.7 (N = 9, without the outlier of the Raunheim/Main). This estimate
could potentially be improved by using further catchment properties, such as
topography or hydro-climatic properties like the runoff ratio. Hence the
important information of uncertainty contributions of hydrological model or
meteorological forecast uncertainty can also be easily obtained for ungauged
basins.

7.7 IMPROVING FORECASTS WITH POST-PROCESSING

A thorough verification study, comparing past forecasts with observations,
could reveal certain inaccuracies of the forecasts such as bias or discrepancies
in the reliability of the assigned probability. There may be underdispersion
(i.e. the ensemble does not display enough spread) or a lack of resolution (i.e.
two different forecast probabilities result in indistinguishable outcomes). Post-
processing is a means to calibrate forecasts, given previous forecast errors, i.e.
the joint probability distribution of forecast and observations P(y;o). The great
advantage is that errors and the uncertainties of the entire forecast chain can
be corrected, but with the forecast error conditioned on observations. The
drawbacks are clear; (i) observations are needed, and (ii) characteristics of
P(y;o) are assumed stationary and especially do not change for the upcoming
forecast being considered. 
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Recent research has established some post-processing methods that are able
to deal with ensemble forecasts; examples are Ensemble Bayesian Model
Averaging (EBMA) (Raftery et al., 2005), an extension of the Hydrological
Uncertainty Processor framework (Krzysztofowicz, 1999) to ensemble
forecasts (Reggiani et al., 2009), or the use of quantile regression (Weerts
et al., 2011). 

An application of EBMA in a Rhine case study is shown here. The method
has the advantage that it is able to deal with ensembles arising from different
models (multi-model ensembles) and ensembles arising from
meteorological ensemble products. In multi-model ensembles, each
ensemble member represents a unique entity, and can be recognized as such
in subsequent ensemble forecasts, while in meteorological ensembles this is
not the case and ensemble members cannot be discerned from one forecast
to the next. Thereby the EBMA forecast model uses mixture distributions
where each ensemble reflects a component (Fraley et al., 2010). The
parameters of these distributions are estimated from the forecast ensembles
and the respective observations. 

The setup for the EBMA computation was chosen as follows: data for the
verification period January 2007 to October 2007 and subsequently for each
lead time, fitted the parameters (mean and standard deviation) of a Gaussian
distribution using the expectation maximization algorithm available in the R
package “ensembleBMA” (Fraley et al., 2010; R Development Core Team,
2012). Initially assigned equal weights were assigned to all ensemble
members, where these weights are subsequently trained by evaluating the
performance of the different models in a suitably selected training period
prior to the start of the forecast. For the case study and at lead times where
the meteorological forecast uncertainty is dominant, a training period of
30 days yielded best results. 

To demonstrate the value of the post-processing step, Figure 7.6 shows the
Rank histogram of the ensemble flow forecasts forced with ECMWF-EPS
and the PIT of the calibrated forecasts using EBMA. While the original
ensemble flow forecasts are under-dispersed and not reliable (U-shaped
histogram), the EBMA flow forecasts show a more uniform distribution,
indicating a better representation of the predictive uncertainty. Moreover,
this improvement is found at both the small scale (Hattingen, River Ruhr,
4100 km2) and at the large scale (Lobith, River Rhine, 160 000 km2).
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To summarize, post-processing methods are available and can be employed
to improve the uncertainty representation of ensemble forecasts. Post-
processing should naturally be applied at the end of the forecast chain to
avoid possible non-stationarity due to combining different methods. Also the
selection of the training period requires some understanding of the given
forecast situation (lead time, travel times of the river, previous processing
methods, such as data assimilation, which are likely to change the error
characteristics of the forecasts). It does not make sense to use a long training
period of more than half a year to improve daily forecasts at the medium
range because the systematic bias, e.g. in the model simulation, may change
its sign over longer periods. In the case of ungauged basins, geostatistical
methods have been suggested to perform local post-processing steps by
Kleiber et al. (2011) for temperature forecasts. This might also be a
prospective method for hydrological forecasts. A successful example for a
geostatistical treatment of forecast errors of hydrological forecasts was
presented by Roscoe et al. (2012). It must be noted, however, that for spatial
transfer of postprocessing results to be useful, similar travel time dynamics
must be present. So it has been found that transferring EBMA weights to
other stations can eventually improve the forecast, but when transferring
weights of stations with different temporal dynamics (e.g., Maxau, Upper
Rhine with Cochem, River Mosel) this can easily introduce biased outcomes
with lower predictive value than the original ensemble forecast. 
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7.8 CONCLUSIONS AND RECOMMENDATIONS

Ensemble forecasting is a means to reflect the uncertainty of a forecast by
running a forecast model for a series of different conditions, such as different
inputs, initial conditions, models, or parameters. There are two different
sources of uncertainty in flow forecasting; simulation uncertainty arising
from modelling the flow of observed water, and; meteorological forecast
uncertainty which regards future model inputs. The forecast horizon, and the
travel time of a given basin determines the relative effect of these
uncertainties on the flow forecast error. This information is crucial when
trying to improve flow forecasts. For ungauged basins it is recommended to
estimate the relative effect of different sources of uncertainty by basin
characteristics such as travel times. The verification of ensemble forecasts is
the key to compare and improve forecast accuracy; therefore, an archive of
forecasts is needed. Such an archive allows calibration of (probabilistic)
forecasts to improve forecast accuracy and reliability based on previous
forecast errors. The use of a post-processing method such as EBMA can
improve the reliability of flow forecast at the small and large scale. 

The results discussed here are based on a case study of the well gauged Rhine
basin. The basin includes different hydrological regimes (snow dominated,
rainfall dominated, and mixed), and sub-basins of differing catchment sizes.
This allows some recommendations for improving forecasts in ungauged
basins to be inferred. 

In the case where meteorological forecast uncertainty is relevant, for
example if travel times are shorter than the forecast horizon, then it is
recommended to use meteorological forecast ensembles as input to a
hydrological model. In the case of short term forecast the recommendations
will depend on the data available. In data-poor regions, it is recommended
that the most relevant uncertainties, which are the simulations and their
input data, be sampled. The uncertainty in simulation may be reflected by
so-called hydrological multi-model ensembles (Georgakakos et al., 2004;
Velázquez et al., 2011). Also sampling of the input uncertainty is important
(Vrugt et al., 2008). For ungauged basins the uncertainty arising from
transferring model parameters should also be sampled (McIntyre et al.,
2005); however, the uncertainties should ideally be constrained by
additional data sources. For example model states can be updated by using
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other data (e.g. remote sensed soil moisture (Komma et al., 2008)). If some
data are available, e.g. flow observations along the river stream or similar
catchments in the neighborhood of the respective forecast location, then
other possibilities arise, such as the regionalization of forecast accuracy or
of post-processing parameters through geostatistical interpolation methods
(Kleiber et al., 2011; Roscoe et al., 2012). 
Where there are data available, the forecasts can be improved by error
correction methods using observations at the forecast location. These
methods can be statistical, such as the post-processing methods shown in
this article, or they may include some physical basis where model states are
updated through data assimilation methods (Weerts and El Serafy, 2006;
Vrugt and Robinson, 2007). With the advances in hydrological modelling,
meteorological forecasting, and earth observations, it is possible to provide
hydrological forecasts anywhere in the world (Fortin, 2011). It is important
to emphasize that such forecasts are inherently uncertain and without
reliable observations it is impossible to verify and calibrate forecasts, which
is essential when using these to provide guidance to decision makers. 
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8.1 ABSTRACT

Prediction of the effects of changing land use and land management
practices (i.e. catchment non-stationarity) for ungauged catchments is an
issue of considerable practical importance for catchment planning and
management. While improved understanding of model strengths and
limitations has led in recent years to major progress in the regionalization of
continuous simulation rainfall-runoff models under the assumption of
catchment stationarity, the issues of non-stationarity raise difficult
methodological challenges. In this paper we report on a) the development
and application of detailed physics-based models, with and without local
data, to represent field scale effects of land management practices in the UK
uplands, b) the use of simpler meta-models to upscale the results to
catchment scale, c) the use of regionalized indices of catchment response to
constrain conceptual model parameterizations for ungauged application, and
d) the mapping of land management effects on soil structure and runoff
processes to extend the use of regionalized indices to address impacts of
land management practice. Finally we point to future developments in
which various data sources can be combined to address these issues. 

8.2 RÉSUMÉ

La prédiction des effets des pratiques changeantes d’utilisation et de gestion
des terres (c.-à-d. la non-stationnarité du bassin) pour les bassins non jaugés
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constitue un enjeu d’une importance pratique considérable pour la
planification et la gestion du bassin. Même si une meilleure compréhension
des forces et des limitations des modèles au cours des dernières années a
donné lieu à des progrès majeurs entourant la régionalisation des modèles de
simulation continue du ruissellement pluvial, en posant comme hypothèse la
stationnarité du bassin, les problèmes de non-stationnarité constituent des
défis méthodologiques de taille. Dans la présente communication, nous
abordons a) la création et l’application de modèles détaillés à base physique,
avec et sans données locales, pour représenter les effets pleine échelle des
pratiques de gestion des terres dans les hautes-terres du Royaume-Uni,
b) l’utilisation de méta-modèles plus simples pour extrapoler les résultats à
l’échelle du bassin, c) le recours à des indices régionalisés de réponse du
bassin pour limiter les paramétrisations de modèle conceptuel pour toute
application liée à un bassin non jaugé et d) le mappage des effets de la
gestion des terres sur la structure des sols et sur les processus de
ruissellement afin d’étendre l’utilisation des indices régionalisés pour tenir
compte des impacts des pratiques de gestion des terres. Enfin, nous traitons
des développements futurs suivant lesquels diverses sources de données
peuvent être combinées en vue de s’attaquer à ces problèmes. 

8.3 INTRODUCTION 

The ability to predict the hydrological response of ungauged basins remains a
critical test of the state of hydrological science. In recent years, with improved
understanding of the strengths and weaknesses of different model types, and
the increased computer power to explore in depth issues of model
performance and parameter identifiability, hydrological modelling has been
developing from an art, based on user expertise and experience, into a science,
in which more formal and objective analysis of model performance is
possible. As a consequence, important progress has been made in prediction
of the response of ungauged basins. Whereas, in the 1970s, estimation of
flows for ungauged basins was limited to simple event-based rainfall-runoff
methods and flow statistics regressed on catchment characteristics, continuous
simulation modelling of the precipitation-runoff response of ungauged
catchments is now a practical tool for use in many hydrological environments.
The representation of catchment change for ungauged basins remains a
difficult challenge, however, and one which requires careful reflection on, and
critical analysis of, the roles of different types of hydrological models. 
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In this chapter, we first briefly review rainfall-runoff model types and report
on recent progress on the regionalization of hydrological rainfall-runoff
models for catchments under the assumption of unchanging catchment
properties (catchment stationarity). We then discuss the modelling of the
effects of catchment change, reporting results of a major UK study to
address the impacts of changing rural land use and land management. We
consider the potential of physically based models (with and without detailed
supporting data), the use of simpler ‘meta-models’ to represent detailed
model performance at catchment-scale, and the use of conceptual models
conditioned on regionalized indices.

8.4 RAINFALL-RUNOFF MODEL TYPES AND MODEL
REGIONALIZATION

It is helpful to set the context for understanding the modelling challenges of
prediction in ungauged basins to introduce briefly a classification of
hydrological model types and their historical development, after Wheater
et al. (1993). We focus on dynamic models of the relationship between
precipitation and runoff. More detailed background can be found in Wheater
(2002), Wagener et al. (2004), and Beven (2011).

Metric models 

One of the simplest and most widely used rainfall-runoff models is the unit
hydrograph, which can be seen as a precursor to more powerful methods of
time series analysis (see, for example, Young (2005)). First developed in the
1930s to represent stream response to individual storm events, the model
consists of a loss function and a linear transfer function. The simplicity of
the method provides a powerful tool for data analysis. Once a set of
assumptions has been adopted (separating the streamflow hydrograph into
fast and slow components and allocating rainfall losses), rainfall and
streamflow data can be readily analyzed, and a unique ‘unit hydrograph’
determined. This is an example of a class of models known as ‘metric’ or
‘black box’, in which the model functional form is derived primarily from
input-output observations (Wheater et al., 1993). 
This analytical capability has been widely used for regional analysis of
catchment response. An example is the 1975 UK Flood Studies Report
(FSR) (Natural Environment Research Council (NERC), 1975). Rainfall
loss and transfer functions were derived from 138 UK catchments, and
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subsequently, regression relationships were defined between the parameters
of the loss and routing models and storm and catchment characteristics,
providing a method for flood estimation on ungauged catchments.
In principle, metric models are limited to the range of observed data; effects
such as catchment change cannot be directly represented (Wheater et al.,
1993). In practice, the analytical power of the method has enabled some
gross effects of change to be quantified. For example, the extent of urban
development was found to be an important explanatory variable for
determining both rainfall losses and the unit hydrograph, and this provided
the basis of a design method to predict potential impacts of urbanization
within the observed range in the UK (NERC, 1975). 
The unit hydrograph therefore provides a practical tool for prediction of
response to storm events on ungauged basins. While its strength is its
simplicity, this is also its weakness. The focus on individual events for flood
estimation has important limitations. One example is in application to
groundwater-dominated catchments, where seasonally varying groundwater
discharge is often the dominant streamflow contribution (see e.g. Wheater et
al., 2007). More generally there is a problem of representing the effects of
antecedent conditions due to snow accumulation, surface water storage or
sub-surface storage on runoff generation, particularly where, as in the case
of climate change, these can be expected to change. Hence there has been a
need to develop more powerful methods for prediction in ungauged basins,
which can incorporate the full range of hydrological processes, and provide
a capability for continuous simulation.

Conceptual models

By the 1960s, available computing power was sufficient to support the first
integrated representation of catchment hydrological processes in models
which could generate continuous flow sequences from inputs of precipitation
and potential evaporation. These ‘conceptual’ models represent component
processes using simplified relationships between storages, defined by
parameters with no direct, physically measurable identity. The best known
early example is the Stanford Watershed Model (Crawford and Linsley, 1966),
currently available as the USEPA-supported HSPF model. This requires some
16-24 parameters to be specified to define the model inter-relationships.
Hence, for application to a particular catchment, calibration is required, i.e.
fitting to observed input-output data to obtain an appropriate set of parameter
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values. In the 1960s this was done manually and subjectively; over succeeding
decades, automatic optimization procedures have increasingly been applied.
A basic problem arises in the fitting of the many parameters in these models
to observed data (typically streamflow), denoted by Beven (1993) as
“equifinality”. For a given model, many combinations of parameter values
may give similar performance, as indeed may different model structures.
This gives rise to two important limitations. If parameters cannot be
uniquely identified, then they cannot be linked to catchment characteristics,
and there is a major problem in application to ungauged catchments.
Similarly, it is difficult to represent catchment change if the physical
significance of parameters is ambiguous. 
Developments in computing power, linked to an improved understanding of
modelling limitations, have led to some important theoretical and practical
developments for conceptual modelling. It is generally recognized that there
is no simple best fit parameter set for such models, rather an ensemble of
‘behavioural’ parameter sets, for which the ‘likelihood’ that a parameter set
is consistent with the available data can be defined (see, for example, the
Generalised Likelihood Uncertainty Estimation (GLUE) procedure (Beven
and Binley, 1992; Freer et al., 1996)).
A second area of development is based on the recognition that much more
information is available within an observed flow time series than is indicated
by a single performance criterion, and that different segments of the data
contain information of particular relevance to different modes of model
performance (Wheater et al., 1986). As a result, multi-criterion optimization
has been widely applied for rainfall-runoff modelling (e.g., Gupta et al., 1998;
Wagener et al., 2000a; 2000b). Tool kits for model building and analysis using
these and other methods are currently available (e.g. Wagener et al., 1999).
Use of these tools has led to the understanding that there are trade-offs between
model complexity and parameter identifiability that need to be explored. If we
are interested in model application to ungauged catchments, it is desirable that
those parameter sets considered as behavioural are contained within a limited
range of the feasible parameter space. In general, improved parameter
identifiability is associated with parsimonious conceptual models (i.e. models
with few parameters). These have been termed Hybrid Metric Conceptual, or
HMC, models, because while they retain a conceptual form, the aim is to
achieve the analytical capability of metric models (Wheater et al., 1993).
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HMC models have therefore been widely used in regionalization studies.
Wagener et al. (2004) provide a detailed discussion of the underlying theory,
tools, and example applications. A basic approach to the regionalization
problem is to search for relationships between model parameters and
catchment characteristics through the regional analysis of large numbers of
catchments. For example, regression relationships for ungauged application
of continuous simulation rainfall-runoff models in the UK have been
developed by Lamb and Kay (2004) and Lee et al. (2005). Alternative
approaches are based on the concept of ‘donor’ catchments (McIntyre et al.,
2005). Multiple parameter sets can be transposed from multiple donor
catchments, with relative weighting of donor parameter sets based on some
measure of similarity of the donor catchment to the target catchment (based
on a set of catchment characteristics), and on the quality of fit (or likelihood)
of the parameter set to the donor catchment. Thus some 40 years after the
first development of conceptual models, their application to ungauged
catchments, at least in certain hydrological environments, has been
established to the point that they can be considered as suitable tools for
routine application in hydrological practice.

Physics-based models

The third and final element in our model typology is the category of “physics-
based models.” Such models are explicitly based on the physics of
hydrological processes, using a continuum representation of catchment
processes in which the equations of motion of the constituent processes are
solved numerically using a regular or irregular grid. They first became feasible
in the 1970s when computing power became sufficient to solve the relevant
coupled Partial Differential Equations for surface and subsurface flow (Freeze
and Harlan, 1969; Freeze, 1972). The models are characterized by parameters
that are (in principle) measurable and have a direct physical significance. An
important theoretical advantage is that if the physical parameters can be
determined a priori, such models can be applied to ungauged catchments, and
the effects of catchment change can be explicitly represented; however,
whether this theoretical advantage is achievable in practice remains an open
question at present, particularly in the context of subsurface processes.
One of the best known models is the Systeme Hydrologique Europeen (SHE)
model (Abbott et al., 1986a; 1986b), currently available commercially from
DHI; a subsequent development is reported by Ewen et al. (2000). The
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catchment is discretized, on a square grid basis, for the representation of land
surface and subsurface processes, creating a column of finite difference cells,
which interact with cells from adjacent columns to represent lateral flow and
transport. River networks are modelled as networks of stream links, with flow
again represented by finite difference solution of the governing equations. The
resulting model is complex, computationally demanding, and data intensive.
In practice, two fundamental problems arise with such models. The
underlying physics has generally been derived from small scale, mainly
laboratory-based, process observations. Hence, the processes may not apply
under field conditions and at field scales of interest. There is, for example,
numerical evidence that the effects of small scale subsurface heterogeneity
may not be captured effectively by spatially aggregated properties (Binley
and Beven, 1989). Secondly, although the parameters may be measurable at
small scale, they may not be measurable at the scales of interest for
application. An example of both is the representation of soil water flow at
hillslope scale. Field soils are characterized by great heterogeneity and
complexity. Macropore flow is ubiquitous, yet neglected in physics-based
models, for lack of relevant theory and supporting data; the Richards’
equation commonly used for unsaturated flow depends on strongly non-
linear functional relationships to represent physical properties, for which
there is no measurement basis at the areal scales of practical modelling
interest; and field studies such as those of Pilgrim et al. (1978) demonstrate
that the dominant modes of process response cannot be specified a priori.
For more detailed discussion see, for example, Beven (1989). 
Physics-based models, therefore, have important strengths and weaknesses.
When applied at catchment scale, with limited data to support the
parameterization, a user is faced with a model with thousands of parameters,
each of which may be associated with a high degree of uncertainty. Due to
the numerical complexity of the model, rigorous exploration of the
parameter space is generally not feasible, so the scientific developments
discussed above for conceptual models can only be applied in a limited
sense (for example, by restricting the spatial variability of parameters to
provide a much smaller number). On the other hand, the fact that parameters
can notionally be associated with physical properties provides a strong
foundation for exploring effects of catchment change as well as application
to data-sparse regions, in particular where cold region processes occur. In
that latter context, we note that there has been widespread use of a class of
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model that represents the physical processes in a parsimonious framework
that seeks to balance process emergence, complexity and parameter realism;
however such models have as yet received little formal analysis of output
and parameter uncertainty. We return to this discussion below.

8.5 BASIN NON-STATIONARITY – MODELLING THE EFFECTS OF
LAND USE AND LAND MANAGEMENT CHANGE

Modelling the effects of changing catchment properties for ungauged basins
is an important practical issue for policy and management, but raises major
challenges for hydrological science. For example, in the UK, following a set
of major floods (in 2000, 2004, 2005, and 2007), questions were asked
concerning the effects of agricultural intensification on flood risk (Wheater
et al., 2008; 2010). Changing agricultural practices include, for arable
agriculture, changing cropping patterns (leaving soils bare at vulnerable
times of the year) and the use of heavy machinery, and for pastures,
increased stocking density and animal weights. It was thought that these
may cause higher flood peaks in streams and rivers due primarily to their
impacts on soil structure and runoff processes (e.g., Heathwaite et al., 1990;
Holman et al., 2003; O’Connell et al., 2007). This issue is not confined to
the UK; similar concerns have been raised across northern Europe
(Boardman et al., 1994; Boardman, 1995; Savenije, 1995; Bronstert et al.,
2002; Pinter et al., 2006; Evrard et al., 2007). If agricultural intensification
were to have significant impacts on flood risk, this would have major
implications for rural land management policy, including the potential for
using land management practices beneficially to mitigate flood risk.
Although the risk of flooding is mainly concentrated in lowland regions,
catchment headwaters, with their generally higher precipitation rates and
flashier response, are important source areas for runoff generation, and
hence are of particular interest.
Although land use and land management changes have been observed to
change local runoff (O’Connell et al. 2004; Marshall et al., 2008),
quantification of catchment scale effects has proved elusive. A UK
programme of catchment scale data analysis was undertaken in an attempt
to identify effects of land management intensification (Beven et al., 2008).
This proved unsuccessful due to the heterogeneity of land use practices at
the catchment scale, lack of information about the local detail of land
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management practices for a given land use type, variability of response with
climate, and data error. In a review of the current state of knowledge about
the effects of land use and management change on flood risk, O’Connell et
al. (2004) concluded that new modelling techniques were needed in order to
predict the impacts of land management on flood risk.

The application of physics-based models with intensive data support

We consider first the role of physics-based models as a tool to address land
management change in a relatively data-rich environment, in particular an
extensive field experimental program established at Pontbren, in the
headwaters of the River Severn in Wales. The aim of the experiment was to
provide multi scale data on the effects of land management practices for a
typical set of upland land management issues and interventions, to support
development of the new modelling approaches needed for flood risk policy
and management (Wheater et al., 2008; 2010).
Pontbren is a farmers’ cooperative, involving 10 farms covering 1000 ha of
agriculturally improved upland pasture (drained, ploughed, re-seeded, and
fertilized) and woodland. Elevations range from 170 to 438 m above sea
level, and the soils are clay-rich, with low permeability subsoil overlying
glacial drift deposits, and are seasonally wet or water-logged. Field drainage
is ubiquitous where pasture has been improved. The predominant land use
is grazing, mainly for sheep.
The Pontbren experiment arose as a result of farmers’ concerns that changes
to land management, and in particular changes to grazing densities and
animal weights, had changed runoff response. Between the 1970s and
1990s, sheep numbers increased by a factor of 6 and animal weights doubled
(R. Jukes, pers. comm.). Recent farmers’ initiatives have included the
reduction of grazing densities and reinstatement of woodland areas and
hedgerows. Research on the infiltration rates of the grazed hillslopes and
woodland buffer strips (e.g. Carroll et al., 2004) demonstrated a significant
change in soil response to rainfall. Infiltration rates on the grazed pastures
were extremely low, but within a few years of tree planting, soil structure
and permeability in buffer strips showed significant improvement, with
mean permeability more than doubling. 
Details of the multi scale experiment can be found in Wheater et al. (2008)
and Marshall et al. (2008). Replicated manipulation plots were instrumented
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to observe the plot scale effects of land management change, instrumented
fields and hillslopes provided data on soil water response and runoff
processes (overland and drain flow) at larger scale, and multiple flow
monitoring installations provided data on stream flows at scales ranging
from ditches and drains to second order catchment response (12 km2). In
addition, soil physical properties were derived from extracted soil cores and
in situ infiltration tests.
The modelling challenges include representing the effects of soil
compaction and tree buffer strips on soil properties and runoff processes, as
well as the effects of agricultural field drainage, at the scale of individual
fields, and at the whole catchment scale.
A detailed, physics-based model was developed, capable of representing the
important hydrological processes operating at Pontbren and similar
catchments, at the scale of individual fields and hillslopes. A model was
developed based on Richards’ equation for saturated/unsaturated soil water
flow, and including macropore processes and overland flow. It incorporated
vegetation processes (such as interception), could represent associated
effects such as changing root depths and soil hydraulic properties, and was
capable of being run in 1, 2, or 3 dimensions (Jackson et al., 2008). The
model was conditioned, within a Monte Carlo based framework of
uncertainty analysis, using physically determined soil hydraulic properties
and continuous measurements of climate inputs, soil water states, and runoff
(as overland flow and drain flow) from the Pontbren experimental sites. Due
to the highly non-linear dynamics, individual fields and hillslopes were
represented at fine resolution (1cm vertical and 1m horizontal resolution),
although spatial heterogeneity on soil properties was not explicitly
represented. 
The detailed model can be used to simulate scenarios of interest, including
the planting of strips of woodland within a hillslope, and the associated
changes to soil structure, evaporation processes, overland flow, and
drainage. Figure 8.1 illustrates the simulated response for a representative
hillslope (100 m x 100 m) using the detailed model for a range of land
management types, including grazed and ungrazed drained grassland,
grassland with tree shelter belts (80 m length, 15 m width) in different
locations, and full tree cover. The envelopes of response represent the range
of parameter uncertainty. 
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While these results are instructive, some caveats remain. For example, despite
the extensive field program, there are residual uncertainties in the perceptual
model (i.e. the characterization underlying the physics-based model) concerned
with the fate of subsurface water in the tree planted areas. We assume here that
connection to field drainage systems exists; and while the modelling allows for
uncertainty in soil properties, and the model has been conditioned on field scale
data, the effects of spatial heterogeneity have not been explicitly evaluated.
Another notable effect was non-stationarity in observed response associated
with a hot dry summer (2006) in which soils cracked and only gradually
returned to normal over the following autumn and winter. These effects have
not been represented in the modelling. Nevertheless, the model provides a
relatively sound basis for the quantification of field scale effects of these
complex and spatially localized land management options, particularly given
the absence of viable alternatives.

Upscaling for catchment scale application

The detailed model is highly computationally intensive and not suitable for
direct application at catchment scale. A strategy was therefore developed to
upscale the results in a computationally-efficient procedure, using meta-
modelling. The detailed model is used to train a simpler, conceptual model
(i.e. of the HMC class as discussed above) that represents the response in a
parsimonious and computationally efficient manner, using basic hydrological
components of loss and routing functions. This requires classification of the
landscape into hydrological response units, based for example on soils, land
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Figure 8.1 Physics-based model: Field scale runoff for different land use types, with
uncertainty bounds.



use, and existing/proposed interventions. Each field in the Pontbren
catchment is classified into a land use/management type; so that the
corresponding set of field scale models can be applied. 9 field types were
chosen based on dominant land use types currently within the catchment and
those management changes that were perceived as likely to have an impact
on flood peaks, including grazed improved and unimproved grassland, tree
shelter belts with different orientations, woodland, and marsh/wetland.
The detailed model is run for each member of a library of hydrological units,
and hence a meta-model parameterization is obtained for each member
through the model training process. Uncertainty in parameter values is
carried forward to this stage via Monte Carlo analysis. Figure 8.2 illustrates
the performance of the meta-model in emulating the detailed model response
for a grazed hillslope with a woodland buffer strip at the base of the slope.
With a library of meta-models, the final element of the procedure is a
catchment scale semi-distributed model. We use a modular modelling structure,
based on a semi-distributed version of the Rainfall-Runoff Modelling Toolbox
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(RRMT) (Wagener et al., 1999), in which the meta-model elements represent
individual hydrological elements, and their outflows are routed down the
stream network. Using the semi-distributed model, the meta-model can be
further conditioned on catchment scale data to reduce parameter uncertainty. 
The hydrological processes and climatological forcing data within the sub-
areas are considered to be homogeneous; the degree of spatial distribution is
represented mainly through the number of sub-areas. These can represent
subcatchments or hydrological response units, and can incorporate the meta-
model structures discussed above. Fields were chosen to be the individual
response units in this application, and as the appropriate land management
unit. They also generally form sensible hydrological units due to the
tendency of farmers to set ditches and drainage outlets at field boundaries. 
The simulated impacts of land management change at the catchment scale
are illustrated in Figure 8.3, for a 4 km2 Pontbren sub-catchment. The
baseline is the present land use at Pontbren, the first scenario removes the
effect of the recent Pontbren tree plantings (and hence takes the catchment
back to something approximating the intensive use of the early 1990s), the
second adds buffer strips to all grazed grassland sites, and the third assumes
the entire catchment is woodland. The median changes in flood peaks
observed for the three scenarios are: removing all the trees causes up to 20%
increase in flood peaks from the baseline condition, adding tree shelter belts
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Figure 8.3 Scenario comparisons of present day landscape, more intensified 1990s land
use, and the implementation of shelter belts and woodland cover.



to all grazed grassland sites causes up to 20% decrease in flood peaks from
the baseline condition, and full afforestation causes up to 60% decrease in
flood peaks from the baseline condition. These effects, however, decrease
with increasing storm return period (Wheater et al., 2008; 2010).

The application of physics-based models with limited data support

Having considered physics-based models applied to simulate land
management change in a data-rich environment, we now consider the role of
physics-based models in a data-poor environment. Even without hydrological
measurements for a site of interest, physics-based models can be developed
and tested using information about small scale hydrological processes and
properties from the literature, or possibly from surrogate sites, as well as
qualitative information about responses through engagement with field
researchers. By using such data to parameterize the physics-based models,
uncertainty in prior parameters is likely to increase greatly. Limited data also
implies that there is a greater chance that the model structures will be poorly
defined (Ebel and Loague, 2006), thereby adding additional uncertainty to
the model predictions (Butts et al., 2004). Therefore the extent to which
uncertainty can be constrained by such data is a key research question. We
also note that physics-based models have the power to support the
development of improved conceptual understanding of runoff processes and
the dominant physical controls, and can thereby provide qualitative insights
that may be of value when considering the effects of land management
change. They may also assist in the design of more effective monitoring
programs in order to reduce model uncertainty.
The context for this discussion is an application to the problem of peatland
management in the UK uplands, and in particular to the Hodder catchment
in NW England. Almost half of the UK’s upland blanket peatlands were
drained, typically by open ditch drainage, during a period of agricultural
intensification in the 1960s and 70s (Milne and Brown, 1997). The
intention was that water tables would be reduced, to create conditions more
suitable for livestock grazing (Stewart and Lance, 1983); however, the
reality has been that drainage generally causes only localized drawdown of
the water table, while also acting as a rapid conduit for runoff. In most
reported cases, the runoff response from drained blanket peats is found to
have reduced times to peak, increased peak flows, led to greater erosion,
and increased DOC in runoff (Ahti, 1980; Conway and Millar, 1960;
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Robinson, 1986; Stewart and Lance, 1991; Holden et al., 2006, 2007;
Worral et al., 2007). Hence, beginning in the 1980s, a program of blocking
peatland drains was started. 
Due to the complex process interactions and relatively limited observations,
there are large uncertainties about the best management practices for upland
blanket peatlands, and therefore suitable process-based models can
potentially aid our understanding of impacts of management interventions.
Following a modelling philosophy similar to that of Weiler and McDonnell
(2004), we developed a priori model structures where the key hydrological
processes were included whilst working to maintain an appropriate level of
complexity relative to the detail of available information concerning the
system hydrological processes. A schematic of the model is shown in
Figure 8.4. Full details are available in Ballard et al.(2012a; 2012b).
In the absence of local data, the drained blanket peatland model was tested
against data from a surrogate experimental site. The model was found to
perform well (Ballard et al., 2012b), which provided a degree of confidence
that the a priori model structure captured the key hydrological processes for
drained peatlands, particularly for peak flows. All calibrated parameters were
found to be identifiable within the a priori parameter ranges, although some
more strongly than others. This suggests that the physical interpretation of
these parameters is reasonable.
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The model was used to perform “virtual experiments” to explore aspects of
hydrological response to a range of storm events throughout the potential
parameter space of UK blanket peatlands. Figure 8.5 shows results obtained
for hypothetical 200 m x 200 m hillslope elements for a range of events of
different occurrence frequency (details are provided in Ballard, 2011). The
results provide important insights into the variability of magnitude and sign of
response with event frequency for the different management practices (intact
and drained peat, and the case of drains that were retrospectively blocked).
The peatland model was then used to perform simulations of intact, drained
and blocked drained blanket peatlands for the Hodder upland catchment in
North-West England. 100 parameter sets were selected from a priori
parameter ranges that were restricted based on specific site knowledge
(drainage maps and DEMs) and information from the literature. For the
largest runoff event, the mean increase in peak flow from intact to drained
peatland was 25%, and the mean decrease in peak flow from drained to
blocked drained peatland was 3%; the range in responses was 4-42%
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increase and 16% increase to 25% decrease, respectively. The change in
runoff response was highly dependent on local conditions, and peak flow
changes from drained to blocked were also dependent on the flow
magnitudes, with simulations with the largest runoff in the drained
simulations most likely to give larger percentage reductions in flows
following drain blocking. Despite parameter uncertainty, the ensemble
responses of the different land management types were found to be distinct;
this suggests that even scarce data can be used to reduce ensemble
uncertainty sufficiently to allow meaningful insights into the changes in
runoff response related to land management. 
As in the Pontbren example, the problem of upscaling results from hillslope
scale arises. A set of meta-models was developed to describe the management
of upland blanket peat, representing intact, drained and blocked drained
blanket peatlands. These have been incorporated into a catchment scale semi-
distributed model, along with other elements, collectively representing the
soils and management practices of interest in the catchment. 

8.6 REGIONALIZATION OF CONCEPTUAL MODELS 

In the application of physics-based models for catchment scale simulation, we
introduced the use of conceptual models (meta-models) to emulation of their
performance. In this section the potential use of conceptual models as an
alternative (or complementary) approach to the problem of estimating land use
change effects in the absence of detailed data is explored more generally. In
particular, the use of regionalized indices of hydrological behaviour to
constrain model parameters in a formal Bayesian framework is assessed.
In this section, two regionalized indices are considered: the Base Flow Index
(BFI) and the US Soil Conservation Service Curve Number (CN). BFI is the
proportion of the catchment discharge hydrograph that can be considered as
base flow. For the UK, BFI has been successfully regionalized based on the
Hydrology of Soil Types (HOST) classification (Boorman et al., 1995).
HOST is based on the soil characteristics of depth to gleyed / slowly
permeable layer, depth to ground water, presence of a peaty surface layer,
and soil substrate. CN relates rainfall volume to corresponding storm runoff
volume (Hawkins, 1993; van Mullem et al., 2002). Based on data from
experimental catchments, estimated values of CN were regionalized for the
USA (United States Department of Agriculture (USDA), 1986) based on
hydrological soil group, land use, and land management classification.

133

8 – Prediction in Ungauged Basins – The Challenge of Catchment Non-Stationarity



The essence of our method, as described in Bulygina et al. (2009, 2011), is
that for a given conceptual model, large numbers of parameter sets are
sampled from the feasible parameter space. Those parameter sets that
provide simulations for which derived BFI and CN values are consistent
with the regionalized estimates of these indices are retained, with a
weighting dependent on an appropriate likelihood function. Thus the
posterior likelihood of a sampled parameter set is proportional to the
consistency of simulated BFI, considered alone, or BFI and CN values
considered together, with the values predicted by the regionalization method
for those indices. The simulated BFI values are calculated from the
continuous time simulations using the hydrograph separation procedure of
Gustard et al. (1992), and the simulated CN values are calculated following
Hawkins (1993) and van Mullem et al. (2002). 
Two case studies are presented. The first, based on Pontbren, uses only
information contained in BFIHOST. Land use effects are represented using
changes in BFIHOST value (see below), and in interception and
evapotranspiration losses. Two types of land use effects are evaluated:
afforestation, and increased stocking density. The second study, based on the
Plynlimon experimental catchments, also in Wales, additionally includes
information from the Curve Number method, which in principle provides
the capability to represent a much wider variety of land use/management
types (Bulygina et al., 2011). 
The first study relies on the following assumptions, which are necessarily of
a speculative nature. Afforestation is assumed to lead to higher BFI, through
changes to soil structure and hence hillslope runoff processes, while keeping
the same HOST soil type. We therefore select for the posterior only those
parameter sets that lead to a base flow increase (with respect to the unforested
BFI). Changes in interception losses associated with afforestation are
estimated using a simple hard threshold bucket model, with canopy storage
capacity depending on species, leaf area index, canopy cover, vegetation
structure, and density (David et al., 2005). Increased stocking density leads
to soil structural degradation. Following the approach of Hollis (Packman et
al., 2004), degraded soil is assigned an appropriate analogue HOST class to
represent the change. The rationale for the proposed changes is that soil
structural degradation, in the form of topsoil and upper subsoil compaction
and seasonal ‘capping’ and sealing of soil surfaces, causes a reduction in the
effective soil storage, which in turn results in increased surface runoff.
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The second study adds CN information to BFI information to represent
effects of different land uses and managements. To assign CN to each
considered soil – land use combination, the British HOST soil classification
(29 types) is mapped into the American USDA soil classification (4 classes)
(Bulygina et al., 2011). Thus, an important assumption is that the CN index
can be used under conditions other than those from which it was derived,
with correspondence derived from a subjective mapping process.
The chosen rainfall-runoff model is the probability distributed moisture
(PDM) model with two parallel linear routing stores (Bulygina et al., 2009;
Moore, 2007). Its structural simplicity is thought appropriate given the data
limitations (i.e. the information used to condition the model comes from only
one or two flow indices), and it has been extensively applied to other
catchments in upland Wales and other UK regions (Calver et al., 2005; Lamb
and Kay, 2004; Lee et al., 2005). This model has five parameters: Cmax is the
maximum soil water storage capacity within the modelled element, b is a
shape parameter defining the storage capacity distribution, kf and ks are fast
and slow routing store residence times, and  is the proportion of the total flow
going through the fast routing store. Model inputs are hourly precipitation and
potential evaporation; the latter calculated using a Penman-Monteith
formulation allowing for explicit representation of canopy interception.

Pontbren application

A 15-minute time resolution rainfall-runoff model was developed for the
Pontbren catchment, which was discretized into 100 m x 100 m runoff
generating elements, integrated using a simple constant velocity routing to
generate catchment scale response. Each element is represented using the PDM
model (see above), which allows element scale land management changes to
be represented within the catchment scale model. Potentially, the catchment
model needs a separate set of parameters for each element. Here, it is assumed
that all elements with the same BFIHOST have the same set of parameter values.
The posterior parameter distributions were found to restrict two (out of the
five) model parameters, the slow flow residence time ks and runoff
partitioning coefficient . Low ks values have low posterior probability, and
the runoff partitioning coefficient distribution is concentrated around a value
of (1-BFIHOST). Model performance was estimated over a highly variable
flow period of 1 January, 2007 to 31 March, 2007. Results showed that the
posterior prediction uncertainty was significantly reduced when compared
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to prior predictions, based on the feasible parameter space. Nash-Sutcliffe
statistics for the expected values of probabilistic flow predictions varied
between 0.7 and 0.85 for different Pontbren subcatchments, supporting the
view that BFIHOST is an effective response index. 
Application of the speculative relationships between BFIHOST and land
management practices is illustrated in Figure 8.6, which shows the predicted
impacts of full afforestation and increased stocking density on runoff at the
most downstream Pontbren flow gauge, for 18 January 2007. The solid lines
represent the 90th percentile simulation range for current conditions and the
dashed lines are the corresponding results for full afforestation and soil
degradation. The uncertainty in the peak flow is high compared to the
expected changes, suggesting that more information about the model
parameter values would be beneficial. The afforestation delayed the highest
peak arrival by 15 minutes (one simulation time step), and the soil
degradation scenario did not show any difference in peak flow arrival time.
Full afforestation decreased peak flow by 8% (median value), and stocking
intensification increased peak flow by 11% (median value).

Plynlimon application

The Plynlimon catchments comprise the headwaters of the rivers Wye and
Severn (Marc and Robinson, 2007; Robinson and Dupeyrat, 2005). The Wye
(10.55 km2) is almost exclusively under extensively grazed grassland, while
the Severn (8.7 km2) is mostly covered with mature coniferous forest. Both
catchments are extremely humid; the ratio of long term precipitation to
potential evapotranspiration is about 5, with similar, slowly permeable soils.
Because of soil similarity, geographical proximity, and qualitatively
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Figure 8.6 Prediction uncertainty bounds for flows at gauge 10 due to the 18th of January,
2007 rainfall event: a) afforestation, b) soil degradation.



different land uses in the catchments, the Wye and Severn catchments are
ideal for application and testing of land use change simulation
methodologies.
Given the physical scale of the catchments, and the use of hourly data, the
catchment response was simulated using the PDM model (for the period
May 1980 through June 1981) without explicit flow routing, i.e. the average
of the responses for all relevant soil type/land use/land management
combinations weighted by their relative contributing areas was used; this
might introduce at most a one hour timing error.
As in the previous case study, it was observed that only two parameters, the
slow flow residence time ks and runoff partitioning coefficient , were
restricted by the information available (BFI and CN); however, different land
use/management types (as represented by CN) introduced shifts in the
parameter distributions – mainly, for parameter . Performance with respect to
observed flow in all 8 subcatchments was considered generally good: the prior
uncertainty was reduced by a large degree throughout the simulated periods;
and probabilistic NS values (Bulygina et al., 2009) ranged from 0.70 to 0.81.
As an illustration of the potential applicability of the method, two simple
land use change scenarios were considered: a) the upper Severn becomes
pasture in good condition; and b) the upper Wye becomes forest in good
condition. Figure 8.7 shows predictions for the event with the highest flow
peak (5-6 October, 1980). Here, black lines represent 95% confidence
intervals for the existing land use conditions and grey lines represent 95%
confidence intervals for the scenario. The median peak flow in the Severn
increases by 9% when the afforested area becomes pasture; in the Wye it
reduces by 13% when the pasture land is afforested.
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Figure 8.7 Predictions during a large flood event. a) Severn becomes pasture in good
condition; b) Wye becomes forest in good condition.



8.7 SUMMARY

In parallel with the development of improved understanding of and insights
into the application of hydrological models, there has been major progress
over the last 40 years in the capability for prediction of flows in ungauged
basins. A key aspect of this has been the use of models as a tool for regional
analysis. Simple metric models, in particular the unit hydrograph method,
provided the capability to analyze event response in terms of simple loss and
routing functions in certain conditions. Regional application of this type of
analysis to large numbers of catchments provided relationships between the
parameters of these models and catchment characteristics that could be used
in ungauged catchment application. Such methods have been widely used as
the basis of much hydrological practice, in particular for flood design.
The use of event-based methods has important limitations (Wheater, 2002).
Conceptual models provide a more powerful set of tools, incorporating the
full set of hydrological processes and providing a capability for continuous
simulation. Advantages include applicability to a wider range of catchment
types, and the capability to represent explicitly effects of sequences of
weather events on runoff generation, including the potential effects of climate
change. Until relatively recently, problems of equifinality of parameter sets
have limited the regional application of conceptual models; however,
increasing understanding of the relationship between model complexity and
parameter identifiability has led to the use of parsimonious HMC models in
regional analysis of large sets of catchments. This has resulted in the
availability of regionalized continuous simulation models, in which
parameter sets are derived either from regression relationships between
model parameters and catchment characteristics or from the direct use (with
appropriate weighting functions) of parameter sets from donor catchments.
The representation of effects of land use and land management change adds
an additional dimension to the problem of modelling ungauged basins. The
ability of models to discriminate such effects through regional analysis is
limited. While gross effects, such as urban development, have been
identified as significant factors in regional analysis, more subtle effects,
such as rural land management practices, have not. This is not surprising, as
discussed above, and does not mean that such effects do not exist. Rather,
the data available are generally insufficient to detect such signals. In this
context, we consider the role of models in synthesis, rather than analysis,
and turn to physics-based models. 
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The applications reported here, for Pontbren and the Hodder, demonstrate
the strengths of physics-based models in representing catchment non-
stationarity, in particular their ability to represent explicitly the effects of
changing physical properties, such as soil compaction, and spatially-
localized management interventions, such as tree shelter belts and buffer
strips. The Pontbren study builds on a detailed multi scale data set, and it is
important to note in passing that few such data sets exist, but that detailed
and long term monitoring and experimentation are absolutely necessary to
understand the effects of land management changes. Nevertheless, the
Hodder example shows that useful insights can be obtained even in the
absence of local data (though surrogate data were available to give
confidence in the model and its parameterization). 
The very detailed physics-based models necessarily require high spatial
resolution to represent the effects of soil structural changes and spatially-
localized interventions. We therefore used the concept of meta-modelling, to
emulate the response of the detailed models using simpler conceptual model
structures, more readily suited to catchment scale application. Results were
presented for Pontbren to demonstrate the ability of meta-models to emulate
the response of detailed physics-based models, and hence to simulate
catchment scale effects.
The application of detailed physics-based models and the development of a
library of meta-models represents a relatively complex and time-consuming
process. While this methodology is suitable for detailed studies of specific
issues on specific catchments, and can provide important insights, it could
not readily be extended to broad scale (e.g. national) application (although
catchment classification could provide one potential approach for
generalization). We therefore considered the potential role of hydrological
indices in conditioning conceptual models. 
In the UK, the Base Flow Index has consistently been shown to be a
powerful descriptor of hydrological response in regionalization studies (e.g.
Lee et al., 2005). Our results from both Pontbren and Plynlimon show that
the use of BFI to condition the PDM model gives a remarkable level of
performance in the absence of any other data; however, to represent the
effects of land management change, some subjective interpretation was
needed. For CN this required mapping of SCS soil types onto HOST soil
types, and the presumption that a US regionalization could have relevance
and value in a UK application. For BFI, soil structural degradation was
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related to an effective change in soil class, and effects of afforestation on soil
structure and runoff processes were simply represented by imposing the
constraint that BFI would be expected to while the HOST class remained
unchanged. We can state that the method is readily applicable, and gives
plausible results. Clearly, a more extensive evaluation that introduces more
sources of information and covers a wider range of UK conditions is
strongly recommended. 
While the issues of model regionalization have been presented in the context
of the historical development of alternative model types, an additional theme
running through the paper is the use of alternative sources of information in
the conditioning of parameter sets. We see this as an important generic
methodology, with the power to combine alternative sources of information
to address complex modelling issues of this kind. We note that a first step in
that direction is reported by Bulygina et al. (2012), in which information
from small scale physical properties, regionalized signatures of flow, and
available flow measurements is combined in a Bayesian framework and
applied to a distributed model for the Hodder catchment in the UK.
Interestingly, the physics-based information contributed most to improving
model performance, followed by local flow data (used to define peak travel
times), and lastly the regionalized signatures. 
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REGIONALIZING HYDROLOGICAL RESPONSE UNDER A
CHANGING CLIMATE
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9.1 ABSTRACT

Regionalizing hydrological response to ungauged catchments is a difficult
problem. It is typically expressed as Prediction in Ungauged Basins (PUB).
The typical practical application of the PUB problem involves not just
predicting the historical hydrological response of a catchment, but also requires
a prediction of the hydrological response of a catchment into the future. This is
particularly true in large-scale water assessment studies, which are typically
initiated and funded to not only understand how much water is currently
available in any particular (typically, at least in part, ungauged) region, but also
to determine how much water will be available for both water users and the
environment into the near (1-5 years) and more distant (5-50 years) future. This
problem is compounded by the potential for changes in catchment hydrological
functioning, modifying the climate-runoff-streamflow-water availability
relationship. Changes in catchment hydrological functioning can be brought
about through changes in land use and land management, or through changes
due to a changing climate. To solve this latter issue, some fairly intuitive
solutions are postulated. Firstly, the hydrological functioning of a catchment
under historical conditions must be understood; secondly, the models used to
represent this hydrological functioning must be improved through improving
the model calibration procedures and parameter estimation; and thirdly, the
model structure must be modified to incorporate hydrological processes which
are assumed to change under a changing climate. It must be recognized,
however, that water managers require estimates of current and future water
availability now in order to more effectively manage water resources. Solutions
to the problem of non-stationarity need to be found, but assessments of water
availability will continue using whatever methods and models are available. 
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9.2 RÉSUMÉ

La régionalisation de la réaction hydrologique aux bassins non jaugés pose un
problème délicat. Elle est en général exprimée en tant que prévisions dans les
bassins non jaugés (PBNJ). Cependant, l’application pratique type du problème
lié aux PBNJ n’implique pas uniquement la prévision de la réaction
hydrologique historique d’un bassin versant, mais exige également la prévision
de la réaction hydrologique future d’un bassin. Cela est particulièrement vrai
dans les études d’évaluation de l’eau à grande échelle, qui sont en général
entamées et financées non seulement afin de comprendre combien d’eau est
disponible à ce stade dans une région en particulier (en général non jaugée, du
moins en partie), mais également afin de déterminer combien d’eau sera
disponible à la fois pour les utilisateurs d’eau et pour l’environnement dans un
avenir prochain (d’ici 1 à 5 ans) et dans un avenir plus lointain (d’ici 5 à 50
ans). Ce problème est aggravé par la possibilité de changements touchant le
fonctionnement hydrologique du bassin, ce qui modifie la relation climat-débit
de ruissellement-disponibilité de l’eau. Les changements qui touchent le
fonctionnement hydrologique d’un bassin peuvent être entraînés par des
changements dans l’utilisation et dans la gestion des terres, ou par des
changements attribuables au changement climatique. Pour résoudre ce dernier
problème, certaines solutions hypothétiques passablement intuitives sont
avancées. Tout d’abord, le fonctionnement hydrologique d’un bassin dans des
conditions historiques doit être compris; deuxièmement, les modèles servant à
représenter ce fonctionnement hydrologique doivent être améliorés grâce à
l’amélioration de la procédure d’étalonnage du modèle et à l’estimation de
paramètres et, troisièmement, la structure du modèle doit être modifiée afin
d’intégrer les processus hydrologiques censés évoluer dans des conditions de
climat changeant. Toutefois, il faut reconnaître que les gestionnaires des eaux
ont besoin maintenant d’estimations de la disponibilité de l’eau actuelle et
future pour pouvoir gérer les ressources en eau de manière plus efficace. Des
solutions au problème de la non-stationnarité doivent être trouvées. Cependant,
les évaluations de la disponibilité de l’eau continueront de reposer sur les
méthodes et les modèles disponibles, peu importe lesquels. 

9.3 INTRODUCTION 

The Prediction in Ungauged Basins (PUB) initiative seeks to extrapolate
hydrological response spatially. This has proven to be a difficult problem to
tackle and has rightly received much attention; however, the problem
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becomes even more difficult when the temporal dimension is added. That is,
more than predicting the hydrological response of an ungauged catchment
historically, there is a need to predict the hydrological response of an
ungauged catchment into the future. Were a catchment to behave the same in
the future as it did historically, then this would not be a problem; however,
this is most frequently not the case, and it is this non-stationarity in catchment
hydrological response which adds an additional layer of complexity. 
It has long been recognized that the assumption of stationarity in hydrological
time series is questionable. Milly et al. (2008) argue that not only is stationarity
of hydrological time series a poor assumption, but that anthropogenic warming
of the climate is the root cause of this. This assumption is also questionable
given the evidence of palaeoclimate records; for instance, those for south-
eastern Australia as presented in Gergis et al. (2011) show that the range of
conditions encountered prior to the 20th century indicate that the assumption of
stationarity prior to significant anthropogenic warming is a poor one; however,
Milly et al. (2008) also point out that the available information base is rapidly
changing, and the inability to assume that future conditions will fall within the
range of those encountered historically means that it is now more important
than ever for information to pass rapidly from climate scientists to water
managers. The most efficient and logical conduit for this communication to
occur is through the hydrological community. The potential for this to occur in
a successful way is demonstrated in Post and Moran (2011). 
Many factors can produce non-stationarity in catchment hydrological
response. These include changes in land use (e.g. replacing forest with
pasture), changes in land management (e.g. increasing the number of farm
impoundments), and changes in vegetation functioning (e.g. wildfire
replacing mature forest with regrowth forest). In addition to these ‘land’
changes, climate change may also introduce further non-stationarity. This
can happen through changes in vegetation type (e.g. due to higher
temperatures), changed vegetation functioning (e.g. due to enhanced CO2
conditions), or through modifications to the hydrological functioning of a
catchment. This could include modifications to the dominant hydrological
processes occurring in a catchment (e.g. a deepening ground water table
may lead to a stream gaining water from ground water discharge and
becoming a stream losing water to ground water recharge), or through
fundamentally new hydrological processes (e.g. the inability of a seasonal
snowpack to form may lead to a complete loss of spring snowmelt).
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It is important to remember that non-stationarity of hydrological response
due to climate change is only one of many factors that influence future water
availability. In general, changes in future runoff due to changes in rainfall
will be more important than the impact of non-stationarity, as will secondary
impacts on hydrology such as changes in runoff due to changes in potential
evapotranspiration; however, not accounting for changed hydrological
processes under a changing climate may lead to a consistent over or under-
estimation of water availability and a consistent error of this type is of great
importance for water managers.
One of the key aims of PUB is to improve the ability of existing hydrological
models to generate reliable predictions in ungauged basins. In Section 9.3 of
this paper, differences in catchment behaviour under different climatic inputs
are illustrated; to do this requires a consideration of the impacts of climate
non-stationarity on hydrological response. A second key aim of PUB is to
develop innovative new models which are able to represent the spatial and
temporal variability of hydrological processes. In Section 9.4 of this paper, the
processes believed to be responsible for the changed hydrologic regime during
the recent drought in south-eastern Australia are described and those processes
that may need to be better represented in hydrological models are discussed.
Finally, in Section 9.5, an example of how to effectively communicate the
uncertainties in projections of future water availability based on the outcomes
of a recent project carried out in Tasmania is given.

9.4 CHANGES IN HYDROLOGICAL FUNCTIONING

Changes in hydrological functioning due to changes in climate are more
likely to lead to changes in water availability across a large region when they
occur in energy limited catchments rather than water limited catchments.
This is because across a large region, more water is likely to be sourced from
energy limited rather than water limited catchments. This is particularly true
in Australia, where the vast majority of the country falls into the water
limited category. For example, in the important agricultural Murray-Darling
Basin in south-eastern Australia, 80% of the water is sourced from 20% of
the catchment area, and although only 0.3% of the total Murray-Darling
Basin is energy limited, it yields 9% of the total runoff (McVicar et al.,
2010). Donohue et al. (2011) attempted to quantify the magnitude of this
effect using a simple, Budyko approach and found that basin-wide, an
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increase in rainfall of 10 mm/year only led to a modelled increase in runoff
of 1 mm/year; however, over the high yielding catchments (which are
predominantly energy limited), an increase in rainfall of 10 mm/year led to
a much greater modelled increase in runoff of 7 mm/year.
A number of recent papers have assessed how the climate-hydrology
relationship may change under a future climate, and how models calibrated to
historical conditions may perform when attempting to predict runoff under a
future climate displaying different climate characteristics. Key results of these
papers are summarized in this section. In general, these studies are limited to
examining historical rainfall-runoff relationships; however, they may offer
some useful insights. Vaze et al. (2010) examined 61 unregulated catchments
from south-eastern Australia with at least 60 years of streamflow records.
They conclude that in general, models can be used to predict the hydrological
response of a future period as long as the rainfall in the two periods differs by
less than about 15%. They also found a degradation of model performance
when the model was applied to a period which was wetter or drier than the
calibration period. Additionally, this degradation was found to be greater when
the period to be predicted (representing a future period) was drier than the
calibration period. This can be seen in Figure 9.1 which shows the reduction
in simulation efficiency when a calibrated model is applied to a drier (or
wetter) validation period. The line of best fit shows that the degradation in
model efficiency is consistently larger when a model is applied to a drier
period of record (left-hand side of the y-axis), compared to when it is applied
to a wetter period of record (right-hand side of y-axis).
Of greater concern for water availability studies however, is the fact that
Vaze et al. (2010) show that not only is this degradation in model
performance also seen in the model bias, but that again, the degradation in
streamflow bias estimates is much greater when a model is applied to a drier
period than when it is applied to a wetter period (Figure 9.2). Interestingly,
three of the rainfall-runoff models examined (IHACRES, SMARG, and to a
lesser extent Sacramento) show a general under-estimation of streamflow
when they are applied to a drier period, while the other model (SIMHYD)
shows an over-estimation when it is applied to a drier period. As the vast
majority of global climate models predict a drier future for this part of south-
eastern Australia (Post et al., 2012b) the choice of rainfall-runoff model
used in the analysis may therefore lead to either a consistent over or under-
estimation of future water availability.
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In other regions of the world, the impacts of a changing climate on the
hydrological response of catchments might be even greater than those of
Vaze et al. (2010). This will be particularly true in areas subject to a seasonal
snowpack, where a warming climate may change a snow dominated regime
into a rainfall dominated one. This was examined by Merz et al. (2011) who
found that some of the model parameters of the HBV model were strongly
related to the climate of the calibration period. As a result, when predicting
the runoff of a future, warmer period, there was a consistent bias. This was
particularly true for wetter catchments, and also for the prediction of peak
streamflows. They attribute this consistent bias to the observed increase in
mean annual air temperature across the catchments of nearly 2 °C between
1976 and 2006 resulting in higher evapotranspiration and drier catchment
conditions in more recent years. They suggest that explicitly accounting for
non-stationary model parameters or relying less on calibration of model
parameters may help, but conclude that identifying model structures that are
able to reliably represent hydrological processes in a changing world is a
more promising solution.
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Figure 9.1 Reduction in goodness-of-fit (as measured by the Nash-Sutcliffe Efficiency, NSE)
when a calibrated hydrological model is applied to a validation period which is
drier (left-hand side of y-axis) or wetter (right-hand side of y-axis) than the
calibration period. (Vaze et al., 2010).



One possible way of determining how a catchment may behave outside the
climatic conditions encountered historically is to examine, by analogy, how
other catchments behave under these different climatic conditions.
Obviously, this is limited by the differences in catchment hydrological
response due to other than climatic factors; however, this can provide
adequate predictions of at least the long-term runoff ratio. This technique is
exploited by Singh et al. (2011) who use a Budyko approach to trade space
for time and thus assess the response of catchments to a range of potential
future climates which fall outside those encountered historically.
Interestingly, this completely different approach reached similar conclusions
to those reached by Vaze et al. (2010) in that the current generation of
rainfall-runoff models produced adequate representations of future
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Figure 9.2 Degradation in simulation bias (as a fraction of runoff) when a calibrated
hydrological model is applied to a validation period which is drier (left-hand side
of y-axis) or wetter (right-hand side of y-axis) than the calibration period. Lines of
best fit are shown for all values as well as for just those points with a positive
and negative bias. (Vaze et al., 2010).



streamflow if the rainfall changed by between -10% and +20%. This result
is reinforced by Bastola et al. (2011) who concluded that time invariance in
parameter values has a minimal impact if the change in precipitation is less
than 10%. Outside this range of future conditions therefore, a different
approach may be warranted.

9.5 POSSIBLE SOLUTIONS

This problem of how to address the potential non-stationarity of rainfall-
temperature-runoff relationships under a variable or indeed a changing
climate has been recognized as a major issue in water resource planning. For
example, the South Eastern Australian Climate Initiative (SEACI) recently
reported results from a project designed to examine the changing
relationship between rainfall, temperature, and runoff (CSIRO 2012a,
2012b). The outcomes of this work show that during the recent ‘Millennium
Drought’ in south-eastern Australia, the extended dry conditions led to
fundamental changes in the rainfall-runoff relationship in some catchments,
with the same amount of annual rainfall during the latter stages of the
drought leading to much less runoff than was produced prior to the
commencement of the drought (Figure 9.3). In addition, as shown for the
Axe Creek catchment, a stream that was essentially perennial before the
commencement of the drought became ephemeral, flowing for only 20% of
the year in 2008. Much of this change in behaviour can be attributed to
lower ground water levels (Figure 9.3), leading to a previously gaining
stream becoming a losing stream (Chiew et al., 2011). 
Petheram et al. (2011) extended this analysis to 34 catchments across south-
eastern Australia; low relief, moderate rainfall catchments showed
statistically significant reductions in runoff coefficient, slow flow, and
hydrograph recession constants during the drought, while high relief, high
rainfall catchments did not. They contend that this reflects the greater
importance of ground water connectivity in low relief catchments. Petheram
et al. (2011), however, also caution about the interaction between changed
processes due to climate variability and those due to land use and land use
change. In particular, they found that it was far more difficult to detect a
changed runoff response in those catchments with very few farm dams,
compared to those with many. Whether this reflects an increase in the number
of farm dams during the drought, or it reflects the impacts of the surface
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water storage capacity in those catchments with pre-existing farm dams is not
easy to determine, although McGee et al. (2012) suggest that farm dams can
have a significant impact on streamflow response in the Canadian prairies. 
Clearly for a rainfall-runoff model to adequately represent the hydrological
behaviour of these catchments during the recent drought, it would need to
have a reasonably sophisticated ground water - surface water module. It may
also need to account for farm dam storages explicitly. Most current rainfall-
runoff models would be unable to represent these behaviours. As the
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Figure 9.3 Hydroclimate time series for the Axe Creek catchment in south-eastern Australia
showing (a) rainfall (solid line) and runoff (dashed line), (b) cease to flow, and
(c) ground water level. (Chiew et al., 2011).



Millennium Drought has recently ended in south-eastern Australia, it will be
interesting to observe whether the changed rainfall-runoff relationship
continues and if so, for how long. This, coupled with observations of ground
water levels will guide the development of improved rainfall-runoff models
able to represent these processes.
In addition to falling ground water levels, other studies have attributed
changes in the hydrological response of catchments in south-eastern Australia
during the Millennium Drought to other factors. Potter et al. (2011) report
changes in the rainfall-temperature-streamflow relationship for 34 catchments
across south-eastern Australia. They attribute around two-thirds of the
observed reduction in streamflow to a reduction in mean annual rainfall and
around 7% to increased temperatures experienced across the region during the
drought. Potter and Chiew (2011) also show that it is not simply changes in
mean annual rainfall which are important, with around 15% of the observed
streamflow reduction in the Campaspe catchment in south-eastern Australia
being due to a reduction in rainfall variability (lack of very wet months) and
another 12% due to a change in rainfall seasonality (with most of the rainfall
reduction occurring in autumn). Clearly, rainfall-runoff models used in
climate change impact studies also need to be able to reflect the impact of
these changed inputs on catchment hydrological functioning.
Given the issues raised here, three steps are proposed which should allow for
the impacts of a change in hydrological processes under a changed or
variable climate to be assessed:

1. Understand the dominant hydrological processes occurring in a
catchment.

2. Improve model calibration and parameter estimation.
3. Change hydrological model structure to incorporate hydrological

processes which are assumed to change under a modified climate.

9.6 CONCLUDING REMARKS

While it is important to continue to develop hydrological model structures
which can account for changed hydrological processes, it is important to
reiterate the comment made in the Section 9.2 that a rapidly changing
information base means that it is more important than ever for information
to pass rapidly from climate scientists to water managers. In addition, water
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managers have decisions to make, and will use whatever information is
readily available in a short time frame in order to make these decisions. 
An example of this is provided by the recent expansion of the irrigation
industry in Tasmania. Here, decision makers required an assessment of the
impacts of climate change on water availability out to the year 2030 in order
to determine which irrigation projects to implement. At the time of carrying
out this assessment, a methodology to adequately account for the effects of
climate non-stationarity on water availability in the region had not yet been
developed. In order to make an informed decision however, water managers
required whatever information was available in a short time frame. In order
to deliver the information required to expand the irrigation industry in a
sustainable way, Post et al. (2012a) adapted a methodology developed in the
Murray-Darling Basin (CSIRO, 2008) to the Tasmanian context.
Determining the impacts of climate change on future water availability was
achieved through the application of multiple rainfall-runoff models combined
with numerous global warming scenarios and the output of 15 AR4 global
climate models. Obviously such a methodology produced many scenarios of
future water availability. Communicating these scenarios in a way that
allowed the decision makers to understand the range of uncertainty inherent
in the projections while still providing them with the data they needed to
reach a decision was a difficult task. Ultimately, presenting the 10th and 90th
percentile of results was chosen as the most appropriate method; however,
the importance of labeling them as ‘dry’ and ‘wet’ projections rather than
10th and 90th percentiles of projected changes is not to be underestimated.
Effective communication of the outputs of sometimes complex scientific
investigations can allow the results of these investigations to be more readily
adopted by the water industry (Post and Moran, 2011).
In attempting to refine our hydrological models in order to better account for
non-stationarity under climate change, it is important to also continue to
deliver information to stakeholders in a timely fashion. It is always
important to quantify the uncertainty in this information. Uncertainties due
to changed hydrological response in a changing climate are just one of
many, and the impact of climate change on water resource availability is just
one piece of information used by water planners and policy makers in
reaching their decisions. It is prudent for climate scientists and hydrologists
to remember this.
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10.1 ABSTRACT

The implementation of a new modelling philosophy based on the
combination of inductive and deductive reasoning approaches for
predicting snowcover ablation and snowmelt runoff is illustrated. An
inductive (i.e. top-down) modelling approach was used for representing
landscape heterogeneity, whereas a deductive (i.e. bottom-up) approach
was applied for detailed snowmelt process descriptions. Physically based
hydrological land surface simulations, using distributed initial conditions
of snowcover and incoming solar radiation, showed an appropriate
representation of both the basin hydrographs and the snowcover ablation.
Aggregated simulations were unable to describe the dynamics of the basin
streamflow when the runoff response was largely governed by solar
radiation. When temperature was a key factor in the onset of melt, the
differences were less. Results indicate that the number of model units
should be in concordance with the association between initial snow water
equivalent (SWE) and melt energy to adequately represent the landscape
heterogeneity in subarctic environments. The modelling methodology
capitalizes on the strength of both modelling approaches, and appears to be
an effective method to reduce the size of the parameter sets and still retain
physical consistency. Therefore it is an appropriate methodology for
applying physically based hydrological models in poorly or ungauged
basins such as complex subarctic environments. 
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10.2 RÉSUMÉ

La mise en œuvre d’une nouvelle philosophe de modélisation basée sur la
combinaison d’approches de raisonnement inductif et déductif pour la
prévision de l’ablation nivale et du ruissellement nival est illustrée. Une
approche de modélisation inductive (c.-à-d. descendante) a été utilisée pour
représenter l’hétérogénéité du paysage, tandis qu’une approche déductive (c.
à d. ascendante) a été appliquée pour les descriptions détaillées du processus
de fonte nivale. Des simulations hydrologiques à la surface des sols, à base
physique et reposant sur des conditions initiales distribuées de manteau
neigeux et de rayonnement solaire incident, ont révélé une représentation
appropriée à la fois des hydrogrammes de bassin et de l’ablation nivale. Les
simulations globales n’ont pas permis de décrire la dynamique du débit du
bassin versant lorsque la réaction de ruissellement était en grande partie
dictée par le rayonnement solaire. Lorsque la température était un facteur clé
au début de la fonte, les différences étaient moindres. Les résultats indiquent
que le nombre d’unités de modèle devrait correspondre à l’association entre
l’équivalent en eau de la neige (EEN) initial et l’énergie de la fonte pour
représenter de manière suffisante l’hétérogénéité du paysage en milieu
subarctique. La méthode de modélisation mise sur la force des deux
approches de modélisation et semble constituer une méthode efficace pour
réduire la taille des séries de paramètres tout en conservant une cohérence
physique. Par conséquent, il s’agit d’une méthode appropriée pour
l’application de modèles hydrologiques à base physique aux bassins non
jaugés ou pauvrement jaugés, par exemple en milieu subarctique complexe. 

10.3 INTRODUCTION 

Making reliable statements about modelling hydrological processes at
different spatial and temporal scales is a crucial aspect to hydrology and
remains a major challenge in hydrological research. The main constraint is
to consider and evaluate the effects of the numerous complex interactions
among hydrological inputs, landscape properties, and initial conditions.
Over the years there have been attempts to make modelling tools more
rigorous and representations of hydrological processes more realistic,
through incorporation of spatial and physical descriptions. While more
sophisticated models result, they continue to suffer from restrictive
assumptions, particularly the representation of landscape heterogeneity and
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both parameter and modelling equifinality that result from transferring point
scale observations and process descriptions to basin scales (Beven, 2002).
Traditionally, two main approaches to model building have been applied,
deductive and inductive. The deductive or bottom-up approach,
conceptualizes a model structure that is based on the belief that the physical
system can be described by deterministic mathematical equations (Young,
2003). This deductive approach assumes that process knowledge acquired
on small spatial and temporal scales can be used to predict the overall basin
response by means of up-scaling small-scale process understanding. This
was first outlined by Freeze and Harlan (1969) for a distributed physically
based hydrological model. Typically, this means that physically based
equations developed at laboratory or point-scale are usually applied to
describe hydrological processes at larger scales (i.e. basin models).
Conversely, the inductive or top-down approach avoids theoretical
preconceptions as much as possible in the initial stages of the analysis
(Klemeš, 1983). The model structure is not pre-specified; rather it is inferred
from the observational data. The approach consists of deriving behaviour
through an analysis of its response based on the rationale that information or
model complexity should be only added when the prior conceptualization
was not able to describe the processes of interest. The inductive approach
therefore has a model structure which is inferred from the data, whereas the
model conceptualization is based on the predominant processes at the
catchment scale (Sivapalan et al., 2003a; Littlewood et al., 2003).
Both approaches are challenged by scaling issues related to the nonlinearity
of the hydrological processes (Beven, 2001). Limitations of the deductive
approach are [1] that processes important at one scale may not necessarily be
important at other scales (Blöschl and Sivapalan, 1995), and [2] the problems
of model equifinality and parameter identifiability that result from explicit
landscape representations and incorporation of detailed process descriptions
(Beven, 2000; 2006). Distributed physically based models have large degrees
of freedom since many parameters and initial conditions need to be set, and
consequently, these models rely on calibration to account for the lack of
knowledge in representing the landscape heterogeneity and to compensate for
the insufficient understanding of physical processes and their interactions
(Beven, 2006; Kirchner, 2006; McDonnell et al., 2007). Thus, fully
distributed physically based models are usually restricted to small areas due
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to their large requirements for data and computational time (Todini, 2007).
Limitations of the inductive modelling approach are [1] it attempts to identify
processes directly at the scales of interest, [2] it interprets these in terms of
properties and processes occurring at finer scales, and [3] since data are
usually rather limited, only simple and often physically unrealistic models
can be inferred solely from the data (Sivapalan et al., 2003a).

Aided by increased computing power, increased process understanding, and
the availability of digital terrain attributes, the most widely used modelling
philosophy is the deductive approach describing a hydrological system by
deterministic mathematical equations founded on well-known scientific
laws (Beven, 2002; Ratto et al., 2007). Though these models have complex
process descriptions, they often do not properly account for landscape
heterogeneity and drainage basin hydrological dynamics (Beven, 1989;
Kirchner, 2006; Savenije, 2009). 

One challenge for the hydrological modelling community is to produce
accurate and reliable predictions in ungauged or poorly gauged basins. The
challenge is even more difficult in areas with limited data, such as in cold
regions due to the limited gauging of subarctic and arctic environments.
While the application of distributed and physically based models in such
environments is restricted due to the lack of data, models based upon
physically based process descriptions offer a valid approach to extrapolation
beyond available observations.

Both inductive and deductive modelling methodologies have limitations
when scaling is needed to adapt the model structure, the process descriptions,
and the observational data. The methodology of this study seeks to combine
the strengths of the two approaches used in hydrological modelling. The
objective of this work is to demonstrate this combined modelling approach
for predicting snowcover depletion and snowmelt runoff in cold region
environments with limited input data while retaining physical integrity within
the processes representation. In order to reduce the predictive uncertainty of
physically based models in ungauged basins, this study seeks an appropriate
model complexity, one that is physically based and parametrically efficient,
for an area with limited data and that would allow both the scaling from point
scale observations to catchment scale models and the identification of stable
landscape based model parameterizations.
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10.4 STUDY AREA

The study area is the Wolf Creek Research Basin (WC) which lies on the
interior edge of the Coast Mountains at approximately 61° N latitude,
155° W longitude (Figure 10.1). The WC basin encompasses an area of
195 km2 and is located in the northwest of Canada 15 km south of Whitehorse.
The basin is part of the southern mountainous headwaters of the Yukon River
Basin and has a generally northeasterly aspect with elevations ranging from
800 to 2035 m a.s.l. and a median elevation of 1325 m a.s.l. The climate is
sub-arctic continental which is characterized by a large variation in
temperature, low relative humidity, and relatively low precipitation. Mean
annual temperature is in the order of -3°C with summer and winter extremes
of 25° and -40°C respectively. Mean annual precipitation is 300 to 400 mm
with approximately 40 percent falling as snow (Pomeroy et al., 1999). The
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Figure 10.1 Wolf Creek Research Basin (WC). (a) Topographic map. GB: Granger Basin.
Circles indicate meteorological stations (PLT: Plateau, ALP: Alpine, BB: Back-
brush, and F: Forest), (b) Land-cover map. Squares indicate streamflow gauge
stations. (UWC: Upper Wolf Creek, GC: Granger Creek, CL: Coal Lake, and
WCAH: Wolf Creek Alaska Highway). Inset shows the location in Canada.



WC basin is within the sporadic discontinuous permafrost zone, and
permafrost is present in north facing (NF) slopes, poorly drained areas, or
areas with significant organic layers. In permafrost areas and the riparian
zones, soils are capped by an organic layer up to 0.4 m thick consisting of peat,
lichens, mosses, sedges, and grasses (Carey and Quinton, 2005). 
The WC basin spans three major environments separated primarily on a
gradient of elevation (Figure 10.1b). The boreal forest (spruce, pine, aspen)
is found in lower areas (800-1300 m a.s.l.), subalpine taiga (shrub tundra) is
found at mid-elevations (1300-1800 m a.s.l.), while alpine tundra (short
shrubs, forbs, and bare rock) dominates high elevation areas
(1800-2035 m a.s.l.). These ecological zones cover 22, 58 and 20% of the
basin area respectively (Francis, 1997). Granger Basin (GB) is a small 8 km2

sub-basin located in the northwest edge of WC basin (see Figure 10.1a)
drained by Granger Creek with a length of approximately 3 km.
Physiographically, GB is characterized by a northeasterly aspect and ranges
in elevation from 1310 to 2035 m a.s.l; it encompasses the alpine tundra and
shrub tundra environments. The selection of GB resulted from the extensive
existing field observations of the WC research project (Janowicz, 1999)
which included landscape snow survey transects measured on a daily basis
during snowmelt, meteorological and soil moisture observations performed
in different landscapes (e.g., UB: upper basin, PLT: plateau area, NF and SF:
north and south facing slopes, and VB: valley bottom) within the basin
(Janowicz, et al., 2002; Pomeroy et al., 2003; McCartney et al., 2006;
Bewley et al., 2007).

10.5 MODELLING STRATEGY

Prediction of snowcover depletion and spring melt runoff in subarctic and
arctic basins is challenging due to the combination of their remote location
and the importance of the winter processes (e.g. snow accumulation and
redistribution). Streamflow in these regions is generally difficult to gauge
well due to winter inaccessibility (Pomeroy et al., 2007). 
The conceptual methodology of this study is based on combining the
strengths of the two approaches used in hydrological modelling. An
inductive approach was used for the identification of the spatial model units
(i.e. basin segmentation) based on a basin wide understanding of the main
hydrological responses, while a deductive modelling approach, based on a
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detailed process description, was applied in each of the model units to
generate the physically based forcing data and process representations. This
approach follows those ideas proposed by Dooge (1986) about the need to
define parameterization of microscale effects and the search for macroscale
laws to properly describe the dynamics of intermediate size systems
categorized by both high complexity and degree of organization. 
The modelling methodology of this study consists of distributed landscape
based simulations of snowcover ablation and snowmelt runoff using a land
surface hydrological (LSH) model in the WC basin. The simulation period
included the 2002 and 2003 snowmelt seasons. The modelling techniques
involved up-scaling exercises from landscape based simulations performed
with two models, a small-scale hydrological model, and a land surface
scheme (LSS) (Dornes et al., 2008a; 2008b) in GB. These models were used
to investigate the effects of including explicit landscape representation and
the effects of varying degrees of spatial complexity in the initial conditions
and forcing data on snowmelt simulations. In order to evaluate the
performance of the distributed landscape based model in WC, model results
were compared to simulations using an aggregated modelling approach
assuming a basin average initial SWE and incoming solar radiation which
was not corrected for slope and aspect effects. 

Model description

As part of the MEC (Modélisation Environmentale Communautaire)
developed by Environment Canada, the MEC – Surface and Hydrology
(MESH; Pietroniro et al., 2007) is a stand-alone LSH model configuration
that couples an LSS, specifically the Canadian Land Surface Scheme
(CLASS) with hydrological routing schemes. Representation of spatial
heterogeneity is based on a mosaic approach using the Group Response Unit
(GRU) concept (Kouwen et al., 1993) where areas with similar land cover,
soils, etc., are grouped with no requirement for grids or sub-basins to be
hydrologically homogenous. The implicit assumption is that each individual
component of the land surface mosaic has the same response for given
inputs of energy and water. GRUs are grouped together into predefined
square model grids where energy and mass balances are calculated, whereas
the runoff generated from the different groups of GRUs is summed together
and then routed to the stream and river system. This approach has the
advantage that the location of the GRU within a grid is not important in the
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routing scheme and that the parameters are landscape dependent rather than
sub-basin based. Since the location of the landscape element within the
calculation unit is not critical, the size of the area of each of these elements
is controlled by only the input data heterogeneity. This spatial aggregation is
appealing because it reduces the total number of model elements but retains
an adequate representation of the landscape heterogeneity (e.g., Pietroniro
et al., 1996; Pohl et al., 2005; Davison et al., 2006). The routing scheme
(Soulis et al., 2000; 2005) includes the adaptation of CLASS to sloped
terrain drainage functions and its coupling to the routing scheme of the
WATFLOOD model (Kouwen, 1988). This involved the inclusion of
physically based transfer functions between the soil column and the micro-
drainage system within each GRU. The fundamental drainage element is
conceptualized by an assembly of sloped blocks connected to a stream and
with the drainage system. Excess surface water drains to the micro-drainage
system as overland flow. 

The horizontal near-surface flow, called interflow, qint, occurs through the
soil matrix and the macropore structure, leaving the control volume through
the seepage face. It is conceptualized as a shallow aquifer flow model
assuming that qint occurs almost entirely when soil moisture is between
saturation and field capacity (Soulis et al., 2000). 

Routing in MESH is based on a storage routing method (Kouwen et al.,
1993). Inflow for each river reach consists of overland flow, interflow,
baseflow, and channel flow from all contributing upstream basin elements,
whereas outflow is related to the storage through the Manning formula.

In this study, the CLASS version 3.3 coupled into MESH 1.0b was used.
CLASS (Verseghy 1991; Verseghy et al., 1993) includes a physically based
treatment of energy and moisture fluxes between the vegetation canopy, the
snowcover, and the soil layers. Vegetation canopies in CLASS can be
represented by four main vegetation types. Energy fluxes are determined by
summing component contributions along a flat horizontal plane that is
assumed to have zero thickness and therefore no heat storage capacity. The
resulting surface flux is directed either to the ground, snow pack, or canopy.
CLASS has a three layer soil representation where textural contents are
explicitly set. Additionally, surface parameters for each model tile such as
soil drainage index, DNR, and soil permeable depth, SDEP [m], control the
drainage through the bottom of the soil profile, and the depth of the soil. The
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flux of energy across each soil layer boundary is evaluated using the flux-
gradient relation for heat conduction in one dimension. Moisture fluxes
through the soil layers are calculated using one-dimensional unsaturated
Darcian flow in the case of gravitational drainage, and the Green-Ampt
method for infiltration.
The snow model uses a coupled energy and mass balance at the top and
bottom of the snow pack to calculate an internal energy state. When the
surface or average layer temperature rises above 0°C, this excess energy is
used to melt part of the snow pack and the temperature is set back to 0°C.
Snow albedo and density vary with time according to exponential functions.
Snowcover is assumed to be complete above a limiting depth of 0.10 m
(D100); otherwise fractional snow coverage is calculated through the
employment of a snowcover depletion curve. Meltwater from the surface
percolates through the snow pack and refreezes until the temperature of the
snow pack reaches the freezing point, upon which any further melt reaches
the base of the snow pack.
The Cold Regions Hydrological Model (CRHM; Pomeroy et al., 2007) was
used to generate the distributed solar forcing for MESH. Incoming solar
radiation was corrected by slope and aspect (Dornes et al., 2008a; 2008c) and
applied to NF and SF slopes. This is accomplished by the modular features
of CRHM that allow for the partitioning of the incoming solar radiation into
direct beam and diffusive components and the corrections for slope, aspect,
and cloudiness conditions. To include the corrected incoming short-wave
radiation in the MESH model, the forcing-data scheme was modified to
include the independent allocation of the solar forcing for each GRU. 

Spatial model representation

The definition of the spatial model elements is an arbitrary criterion given the
difficulty, or impossibility, of finding an optimum element size that can
represent measurements, processes, and modelling scales (Blöschl, 1999).
The choice of a model resolution determines what variability can be
explicitly and implicitly represented (Grayson and Blöschl, 2001). The
representation of the landscape heterogeneity was based on intense field
observations during several years of research in WC and in arctic
environments of snow accumulation, ablation regimes, and runoff generation
processes. GRU delimitation was based on landscape tiles defined according
to their distinct parameters that are relevant for snowmelt such as initial
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conditions (i.e. end of winter snowcover characteristics), vegetation cover
(i.e. alpine, shrubs, and forest), and topographic characteristics (i.e. slope and
aspect) (Figure 10.2a). Slopes with angles lower than 20° were assumed to be
equivalent to horizontal terrain. The exposures explicitly considered were
those relevant to both snow accumulation and ablation processes. Therefore,
NF and SF slopes were included due to their distinct energy and snow
accumulation regimes as a result of redistribution of snow by wind, whereas
the EF slopes were explicitly included due to the typical presence of snow
drifts as a result of their lee location with respect to the dominant western
wind direction (McCartney et al., 2006). Vegetation types, alpine tundra,
shrubs, and boreal forest were also explicitly considered due to their
important role in snowfall interception, snow accumulation regimes, and
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Figure 10.2 (a) Illustration of the GRUs used for landscape model representation of WC in the
MESH model. F: Forest, S: Shrub, A: Alpine, NF: North facing slope, SF: South
facing slope, EF: East facing slope, and WF: West facing slope. (b) Illustration of
the model grid used to aggregate runoff calculations. Arrows represent flow
direction and internal lines the drainage network.



snow pack energetics (Pomeroy et al, 1999; Carey and Woo 2001a;
McCartney et al., 2006). Shrub areas developed the deepest snowcovers
whereas shallow and wind-eroded snowcovers formed at the forest and alpine
sites respectively. In the shrub area, snow is blown from short shrubs and
exposed areas to sheltered and tall shrub sites resulting in very heterogeneous
snowcovers (McCartney et al., 2006; MacDonald et al., 2009). In the forest
site, intercepted snow is mostly retained in the canopy from where it
sublimates resulting in shallow snowcovers (Pomeroy et al., 1999). At the
alpine site, the lack of a conspicuous vegetation cover and its exposed
location due to the elevation, lead to eroded snowcovers as a result of its
source role in the snow transport process (Pomeroy et al., 1999). 
A model grid of 3 x 3 km was used to aggregate runoff calculations from GRUs
(Figure 10.2b). Thus, the 195 km2 basin was divided into a 10 by 7 square grid.
The grid size was selected to approximate the area of GB in order to compare
the distributed results of a single 9 km2 grid cell with the GB observations.
The spatial variability of the available snowmelt energy is also related to
topography and vegetation. Pomeroy et al. (2003) found substantial
differences in energetics and rates of snow ablation over shrub tundra surfaces
of varying slope and aspect. Incoming solar radiation on SF slopes was
substantially higher that on the NF. These differences in solar radiation on NF
and SF slopes were reduced with cloudiness conditions, and caused small
differences in net radiation in early melt; however, as shrubs and bare ground
emerged due to faster melting on the SF slope, the albedo differences resulted
in large positive values of net radiation to the SF, whilst the NF fluxes
remained negative. The presence of shrubs also has important influences in
driving ablation regimes; decreasing the albedo values and governing
snowmelt energy (Sturm et al., 2001; Pomeroy et al., 2006). Further,
McCartney et al. (2006) observed that the greatest snow accumulation in tall
shrubs plays a key role in the snowmelt streamflow regime. 

Observations, data, and initial conditions

Four meteorological stations were used to generate the distributed forcing
data for the MESH model. The stations are located in the three major
environments (forest, shrubs, alpine), covering not only the different
landscape types but also the basin elevation ranges (see Figure 10.1). Table
10.1 describes the location variables observed at 30 minute intervals at the
meteorological stations.
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Distributed values of each forcing variable for the model domain were
obtained by linear interpolation values from the four stations based on the
model domain. Since the snowmelt season is a relatively short period, a
constant environmental lapse-rate correction (-7.65°C/km), was used to
compensate for elevation effects on Ta values. The atmosphere pressure
(Patm) values were distributed by calculating for each grid element the
values measured at the ALP station using a barometric equation.
Atmospheric long-wave radiation (L↓) values measured at the PLT station
were uniformly distributed over the model domain. Due to uncertainties in
the precipitation (P) values recorded using unheated tipping bucket devices
at the F, PLT, and ALP stations, P values measured at the BB station using
an automatic precipitation gauge, consisting of a storage bin filled with
antifreeze used to convert snow to liquid water, were corrected for wind-
induced undercatch. The P values were uniformly distributed over the basin
since no consistent relationship between snowfall and elevation was
observed in the basin (Pomeroy et al., 1999).
Soils types can be related to the three principle ecosystems of WC basin
(Francis, 1997; Janowicz et al., 2003). Forest soils are coarse consisting of
loamy sand and sandy loam with a thin organic layer. Shrub tundra soils are
medium to coarse textured consisting of silty loam in the upper horizons (0
to 18 cm) with sandy loam in the lower horizons. The organic layer is usually
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UTM locationStation ID

Northing
(km)

Easting
(km)

Elevation
(m a.s.l.)

Meteorological and state
variable measured*

Forest (F)1 6718 503 750 K� �,K , T , RH, U, P, S , T , Sa d s m

K� � �,K , L ,T , RH, U, P, S , T , Sa d s m

K� �,K , T , RH, U, P, S , T , S , SPa d s m

K� �,K , T , RH, U, P , P, S , T , Sa atm d s mAlpine (ALP)2 6715 492 1616

Buck Brush (BB)2 6710 489 1250

Plateau (PLT)2 6712 490 1460

1,2

a

atm d s

m

Elevation from ground surface for meteorological sensors:

1 is 10 m (above canopy), 2 is 2 m.

*Incoming (K ) and outgoing (K ) short-wave radiation,  incoming long-wave

radiation (L ), air temperature (T ), relative humidity (RH), wind speed (U),

precipitation (P), barometric pressure (P ), snow depth (S ), soil temperature (T ),

soil moisture (S ), and snow pillow (SP).

� �
�

Table 10.1 Meteorological stations within Wolf Creek basin.



less than 10 cm thick with the exception of the NF slopes where it is usually
well defined with depths of about 18-25 cm (Carey and Woo, 2001b). Alpine
tundra soils are primarily silty loam with a very thin (< 2 cm) or nonexistent
organic layer. Presence of boulders of up to 1 m is frequent and scattered
about the landscape. Since soils are fully frozen at the time of snowmelt,
initial soil moisture content was based on fall observations at different depths
using Time-Domain Reflectometry (TDR) sensors at the A, BB, and F sites.
As for pre-melt conditions, no ponded water was considered and minimal
liquid water content (0.04) was assumed for the entire soil column; however,
these values are indicative since soil moisture content can potentially be
affected by sporadic melt or infiltration events during winter. Initial soil
temperatures were obtained from observations at the same sites using buried
thermocouples with the same reading depths. Temperatures of the canopy
were set to match the air temperature, following Sicart et al. (2004).
Snowcover conditions prior to the onset of melt were set from snow survey
transects located in different locations (UB, NF, SF, VB, PLT) of the shrub
and forest sites. To account for snowcover redistribution, field observations
describing the typical presence of snowdrifts on the NF and EF slopes
(Pomeroy et al., 2003; 2004; McCartney et al., 2006) were considered. As a
result, SWE values corresponding to snowdrift conditions were assigned to
the GRUs with NF and EF slopes in the shrub landscape area. In the forest
landscape, the same initial snowcover was applied to all GRUs reflecting
interception rather than wind redistribution of SWE. The alpine environment
was initialized with values from the ALP station and UB snow survey in GB.
Distributed simulations of MESH were validated where data were available.
Thus, snowcover ablation was evaluated in GB using snow survey data
(Dornes et al., 2008b), at BB station using snow pillow data, and at the F
site for 2003 using snow survey data from a snow grid of 21 by 21 points.
Streamflow model performance was analyzed at four stations within the WC
basin (see Figure 10.1) and subject to different flow regimes during the melt
season.

Model calibration

Automatic calibration of the MESH model was performed using the
Dynamically Dimensioned Search (DDS) global optimization algorithm
(Tolson and Shoemaker, 2007). The calibration problem was solved using a
single objective function by maximizing the Nash Sutcliffe Efficiency (E)
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coefficient (Nash and Sutcliffe, 1970) between simulated and observed
streamflow values at the WC basin outlet (WCAH). Since the snowmelt
runoff is described by a relatively well-defined single hydrograph, the E
coefficient was selected due to its simplicity and because it is the most
widely used reliable statistic for assessing the goodness of fit of
hydrological models. 
The 2002 snowmelt season was used as the calibration year while the 2003
snowmelt season was selected as the validation period. Since the modelling
of the entire WC basin is an up-scaling exercise of the results found in GB,
calibration was restricted to the hydrological parameters that describe flow
routing at the landscape or GRU scale (i.e. overland, subsurface flow) and
streamflow, while the values of the parameters that describe snowmelt were
set according to the optimum values found for CLASS in GB (Dornes et al.,
2008b). Parameter ranges were restricted according to both distributed
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GRU

Forest Shrubs Alpine

River
network

DRN - Drainage index 0.500
(0-1)

0.615
(0-1)

0.817
(0-1)

Dd - Drainage density [m ]-1 2.765
(0-5)

2.324
(0-5)

3.350
(0-5)

XSLP - Average GRU slope [m m ]-1 0.015
(0.01-0.05)

0.047
(0.01-0.05)

0.005
(0.01-0.05)

GRKF - Coef. K change in
1st metre of soil

sat 0.22
(0.2-1)

0.40
(0.2-1)

0.92
(0.2-1)

MANN - Manning’s n overland flow 0.034
(0.025-1)

0.040
(0.025-1)

0.046
(0.025-1)

WFCI - Surface K [m s ]sat
-1 5.9E-6

(1E-9-1E-5)
0.040

(0.025-1)
0.046

(0.025-1)

wf_r2 - River roughness 0.792
(0.1-0.95)

ZPLIMS - Lower limit ponding water [m] 0.078
(0.02-0.015)

ZPLIMG - Upper limit ponding water [m] 0.176
(0.15-0.19)

Table 10.2 Optimized flow routing parameter values for MESH in WC basin.  Forest, Shrub,
and Alpine GRUs include the NF, SF, EF, and WF-flat landscape units.
Parentheses indicate parameter bounds.



observations at GB (e.g., McCartney et al., 2006; Bewley et al., 2007) and
prior information (e.g., Verseghy et al., 1993; Davison et al., 2006) for
similar environments. Figure 10.3 shows the CLASS landscape based
simulations of the snowcover ablation when distributed and solar forcing
and initial conditions are considered. Forest parameters not included in the
simulations of GB were set to the default values used in the Global
Environmental Multi-scale (GEM) model of Environment Canada. 
Calibration was constrained by assigning the same parameter value to all GRUs
within each main vegetation cover. For example, NF slope, SF slope, EF slope,
and WF slope and flat landscape units in the shrub area each shared the same
parameterization. Similar approaches were applied in the alpine and forest area.
Table 10.2 illustrates the parameters values defined using the DDS algorithm. 
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Figure 10.3 Observed and simulated landscape SWE values with CLASS in Granger Basin
(GB) using distributed initial conditions (SWE) and incoming short-wave radiation
(K↓). Cal. and Val: calibrated and validated simulations. NF and SF: north and
south facing slopes, VB: valley bottom, UB: upper basin, PLT: plateau area.
(Adapted from Dornes et al., 2008b)



10.6 MODELLING RESULTS

Figure 10.4 shows the streamflow simulations at the WCAH station, at the
outlet of the basin, for the 2002 and 2003 snowmelt seasons using
distributed and aggregated approaches respectively. Overall, an accurate
representation of the observed hydrograph was seen when the distributed
approach (i.e. using distributed initial conditions and solar forcing) was
applied in both the calibration and the validation periods (Table 10.3).
Simulated values adequately described the different dynamics of the
observed streamflow that resulted in a steady and late hydrological response
in 2002 with a gradual rise and recession of the hydrograph limbs compared
to the early, sharp, and ephemeral peak observed in 2003. The model
efficiency resulted in E coefficients of 0.88 and 0.68 for 2002 and 2003
respectively. Although underestimation of the hydrograph peak degraded the
model performance in the validation period in 2003, an appropriate
representation of both the timing of the peak and the recession was seen.
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Figure 10.4 Comparison between observed and simulated hydrographs at the Wolf Creek
Alaska Highway (WCAH) gauge station. DIST and AGR: distributed and
aggregated modelling approaches. (a) 2002 calibration, (b) 2003 validation.

Modelling approachYear

DIST AGR

2002 0.88 -1.06

2003 0.68 0.67

Table 10.3 Streamflow model performance (E, Nash-Sutcliffe coefficient) obtained at the
WCAH gauge station in Wolf Creek basin. DIST. and AGR: Distributed and
aggregated modelling approaches. 2002 was the calibration year.



Conversely, when the aggregated approach was applied by assuming a
basin-wide average initial snowcover and uniform (i.e. over horizontal
terrain) incoming solar radiation, the model performance was drastically
degraded in 2002 with a less noticeable effect in 2003 compared to the
distributed approach. To avoid the possible influence of calibration in the
comparison between distributed and aggregated approaches, simulations
using the aggregated approach were also calibrated in 2002 using the DDS
algorithm. The inappropriate prediction of the observed hydrograph that
resulted in a negative E coefficient highlighted the importance of
considering the spatial distribution of initial conditions and solar forcing in
model performance.
Reasons that might explain the different model performance from using both
distributed and aggregated approaches can be found by analyzing the basin
streamflow response. Typically, the streamflow response of the WC basin is
controlled by sequential melt timing between the different ecosystems and by
the shrub tundra zone due to its larger extent, central location, and deeper
snow packs compared to the forest and alpine areas. Melt starts around the
middle of April in the forest area, followed by the shrub tundra zone with an
onset of melt around April 20, whereas melt in the alpine area starts around
the end of April. Furthermore, streamflow dynamics can by affected by warm
air advection over the melting snowcover, enhancing melt, and accelerating
streamflow response. A combination of these processes can lead to
synchronized or unsynchronized melt events between the different landscapes
resulting in different basin streamflow responses. For the 2002 snowmelt
season, the onset of melt was rather late and driven by increases in both air
temperature and incident solar radiation. These atmospheric factors, combined
with large snowdrifts observed on NF slopes, resulted in a late and single peak
streamflow response. The aggregated model using a basin average initial SWE
and incoming solar radiation not corrected by topography, simulated melts
earlier than occurred. The 2003 snowmelt season showed an onset of melt as
a consequence of above freezing air temperatures earlier in the season that
stopped as the temperatures fell below the freezing point on May 2 (Figure
10.5). This phenomenon generated a sharp and early streamflow response.
Later in the season, the increasing air temperatures and solar radiation
combined with lower amounts of initial snow on the NF slopes and
comparatively larger snowcovers on the SF slopes resulted in a steady
streamflow response. Simulations using the aggregated approach at the basin
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outlet did not differ from those using the distributed approach and both
replicated the observed peak hydrograph, although the model performance
degraded as the season progressed. Moreover, simulated streamflow values in
2003 showed an early melt event in concordance with an air temperature
increase around April 20 that was not recorded in the observed hydrograph
presumably due to the delay of streamflow as a result of snow dam effects.

Distributed streamflow simulations are displayed in Figure 10.6 in CL, GC,
and UWC gauge stations for 2002 and 2003 respectively. The main
contribution of Coal Lake is the maintenance of a base flow. This situation
was observed in 2003 where the flows at CL did not influence the peak
hydrograph at the Wolf Creek outlet; however, a larger contribution to the
basin response was observed in 2002, where both hydrographs showed the
same shape and timing. Simulated values for the 2002 snowmelt season at
the GC station (Figure 10.6c) showed an appropriate timing of the peak;
however, an underestimation of the observed hydrograph peak value was
seen. Simulated streamflow values in 2003 (Figure 10.6d) showed a lack of
agreement with the observed hydrograph resulting in earlier runoff volumes
and lower peak estimations.
Simulated values at the UWC gauge station in 2002 (Figure 10.6e) showed
early runoff volumes that were not recorded in the observed hydrograph.
Despite the differences between the observed and the simulated hydrograph
shapes, spring runoff volumes were reasonably close. Similarly, for the 2003
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Figure 10.5 Illustration on a daily basis of the incidence of air temperatures in the dynamics
of the streamflow response observed at WCAH gauge station in the 2003
snowmelt season.



snowmelt season, simulated values showed an earlier snowmelt runoff
response (Figure 10.6f). Overall, differences between distributed simulated
and observed streamflow values illustrate that the model with the given
spatial resolution is not able to accurately replicate the complexity of small-
scale snowmelt runoff processes. Good agreement of simulated and
observed runoff volumes and less important differences in replicating the
runoff dynamics were seen in 2002 when the snowmelt runoff response was
characterized by a single peak event. Larger differences in describing both
the observed dynamics and runoff volumes were observed in 2003 as a result
of the complex runoff response that resulted in lower flows and multi-peak
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Figure 10.6 Comparison between observed and validated simulated hydrographs. (a) and (b)
at the Coal Lake (CL) gauge station (drainage area: 71 km2), (c) and (d) at the
Granger Creek (GC) gauge station (drainage area: 6 km2), and (e) and (f) at the
Upper Wolf Creek (UWC) gauge station (drainage area: 15 km2) for 2002 and
2003 respectively within each pair.



hydrographs. The inherent observation errors of low flow volumes, and the
inaccessibility of the gauge stations early in the melt season, could also
contribute to observational uncertainty.
Distributed simulated values of snowcover depletion were extracted in those
places where distributed observations were available. Figure 10.7 illustrates
the comparison between simulated snowcover depletion values with snow
pillow observations at the BB station for 2002 and 2003 and with snow survey
values measured at the F station in 2003. Evaluation of the model performance
against snow pillow data was conducted by comparing the simulations against
the 5-day average of the observational data. Overall, there is reasonable
agreement between simulations of the snowcover depletion and observed
snowcover values for both years (Figures 10.7a and b), particularly since the
snow pillow data represents the melting of an unvegetated snow pack.
Differences were more evident in 2003, where the model results were not
totally able to describe the observed fast depletion of the snow pack. In the
forested area (Figure 10.7c), an adequate description of the early stages of
melt was seen despite the sparse data through the snowmelt period. 

Limitations to this approach were i) coarse scale of modelling compared to
small sub-basins with stream gauges in WC prevented small scale validation
of the model, ii) non-physical snowcover depletion and vegetation
parameters were present that could not be related to field observations, and
iii) calibration of shrub and vegetation parameters may have masked effects
of shrub emergence, small-scale advection, and micrometeorological
differences between tiles. There needs to be further assessment of whether
to include these in the model. 
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Figure 10.7 Comparison between observed and validated simulated snowcover depletion.
(a) and (b) Buck-brush (BB) site (snow pillow data), and (c) Forest (F) site (snow
survey data).



10.7 CONCLUSIONS 

This study illustrates an example of a new approach for physically based
modelling of snowcover ablation and snowmelt runoff in complex subarctic
environments with limited data while retaining integrity in the process
representations. This modelling methodology is based on the combination of
inductive and deductive reasoning approaches. The inductive (i.e. top-
down) modelling approach, based on a basin-wide understanding gained
from observations of the main factors that drive the snowmelt processes in
northern mountainous areas, was used for representing the landscape
heterogeneity, hence the spatial model representation was based on
landscape units. The deductive (i.e. bottom-up) modelling approach was
applied for detailed process descriptions that incorporated physically based
algorithms with a priori parameter sets describing snowmelt. The
philosophical basis of the modelling approach is the desire to describe the
processes in as physically realistic a manner as possible, given the
availability of data and parameters to run the model.

Simulated streamflow values using distributed initial conditions of
snowcover and incoming solar forcing were able to describe the different
timing and magnitude of the basin responses observed in both of the study
years. When the aggregated approach was applied, the model was unable to
simulate the dynamics of the basin streamflow in 2002 when the runoff
response was largely governed by solar radiation and the negative
association between snow accumulation and melt energy observed in the
shrub tundra area. Conversely, the differences between the distributed and
aggregated approaches were less important when temperature was a key
factor as in the onset of melt in 2003. Melt synchronicity was reduced with
greater incoming short-wave radiation, so the more clear skies prevailed, the
greater the duration of melt over the basin. The distributed modelling
approach was able to properly describe the sequential melt timing, whereas
the aggregated approach failed. Under conditions with greater cloudy skies,
both modelling approaches had a very similar performance as a result of a
less important effect of the initial conditions and solar forcing on the onset
of melt.

The selection of landscape units defined according to premelt snowcover
conditions, vegetation cover, and topographic characteristics appears to be
an effective method to reduce the size of the parameter sets and still retain
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physical consistency. These model units can be viewed as signatures of
hydrological variability or predictor variables (Sivapalan et al., 2003b;
Sivapalan, 2005) which have a significant importance for accurate
predictions in northern and mountain basins typically characterized as
ungauged or poorly gauged basins and for land surface-atmospheric
interactions at both small and larger scales.
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PUB IN PRACTICE AT THE NATIONAL SCALE:
THE CASE OF SOUTH AFRICA

D.A. Hughes1

1Institute for Water Research, Rhodes University, South Africa

11.1 ABSTRACT

The extent to which some of the achievements of the PUB decade can be
applied in practice is discussed in the context of South Africa. The country
has a long history of using hydrological models for practical water resources
assessment, but their application has been largely based on traditional, pre-
PUB approaches using calibration in gauged basins and rather subjective
parameter transfer approaches to ungauged basins. This chapter outlines
some of the more recent advances that have been made in the use of
uncertainty approaches in South Africa and identifies some of the issues
with implementing these in practice. The general conclusion is there is much
to be gained from the further implementation of PUB principles in practice,
but greater efforts are required to convince practitioners and decision
makers of the advantages. 

11.2 RÉSUMÉ

La mesure suivant laquelle certains des accomplissements de la décennie de
prévisions en bassins non jaugés (PBNJ) peuvent être appliqués dans la
pratique est traitée dans le contexte de l’Afrique du Sud. Ce pays possède
une longue histoire d’utilisations de modèles hydrologiques pour
l’évaluation pratique des ressources en eau, mais leur application a été
largement basée sur les approches traditionnelles, pré-PBNJ, faisant appel à
l’étalonnage dans les bassins jaugés et à des approches plutôt subjectives de
transfert des paramètres aux bassins non jaugés. Le présent chapitre décrit
certains des progrès les plus récents ayant été accomplis dans l’utilisation
d’approches d’incertitude en Afrique du Sud et cerne certains des problèmes
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liés à leur mise en œuvre dans la pratique. La conclusion générale qui se
dégage est qu’il y a beaucoup à gagner de l’adoption plus poussée des
principes de PBNJ dans la pratique, mais qu’il faut déployer davantage
d’efforts pour convaincre les professionnels en exercice et les décideurs des
avantages offerts. 

11.3 INTRODUCTION 

A large proportion of the research undertaken as part of the PUB decade has
been directed at developing the science of hydrological modelling, including
such topics as parameter estimation, scale and regionalization issues, model
structures and, of course, various aspects of uncertainty quantification and
assessment. The use of hydrological models for practical water resources
assessments has a much longer history than the recent PUB decade. Within
South Africa, the WR90 reports (Midgley et al., 1994) represented the first
attempt in the region at using a hydrological model (the Pitman model:
Pitman, 1973) to generate time series of monthly streamflows for each of
1946 so-called “quaternary” catchments (varying in area from approximately
50 km2 to over 10 000 km2) covering the whole of South Africa, Lesotho, and
Swaziland. These are the fourth, and most detailed, level of catchment
definition used for making important water resources management and
planning decisions. This study has been recently updated as WR2005 (Bailey
and Pitman, 2005), while a further review of some of the data, model
approaches, and model results is currently under way. 
The WR90 simulations were based on the calibration of the model against a
limited number of naturalized (development impacts removed) and patched
(missing data values infilled) observed streamflow records, followed by
regionalization of the model parameters based on somewhat subjective
assessments of catchment similarity. The WR2005 update adopted the same
approach but using a more recent version of the model that more explicitly
accounts for surface and groundwater interactions and is similar to the
method in Hughes (2004). While these studies can claim to represent
examples of PUB in practice, they have not had the opportunity to
incorporate many of the advances in model application that have resulted
from the contributions to the PUB decade (Sivapalan et al., 2003).
Unfortunately, the proposals for the future updating of the simulations
remain based on the same basic techniques that were used during the first
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study, and the implications are that the scientific advancements made
internationally during the PUB decade will not become part of hydrological
modelling practice in the region.
Some of the potential problems with the approaches that were previously
used, and which are continuing to be used include:

1. The Pitman model is a conceptual type model with many interacting
parameters such that equifinality issues (Beven, 2006) can be very
problematic during manual calibration. This problem is potentially
exacerbated when the calibration and parameter regionalization tasks
are performed separately by different groups in different parts of the
country. Even though the calibration teams are expected to operate
with similar calibration principles, it is likely that some variations in
the calibration approach will exist between teams. The implication is
that the calibrated parameter sets will be inconsistent across the
country and that there is a need for a more objective approach to
establishing parameter sets for both gauged and ungauged catchments.

2. There are relatively few streamflow gauges in the country and many
of these are impacted by upstream developments that are not
adequately quantified. The process of naturalizing streamflow records
will clearly influence the calibrated parameter sets and therefore the
regional parameter sets used for ungauged sites. Many users in South
Africa have preferred to use naturalization methods, while others have
included the human activities as part of the model and compared the
results with the existing observed streamflow data. Both approaches
are very uncertain when faced with poor water use data and human
effects that are highly non-stationary. It is therefore difficult to
determine if the parameter sets used to represent the natural
hydrological response are appropriately quantified (i.e. behavioural).

3. There are some parts of the country (notably the areas of steep
topography) where rainfall patterns are highly spatially variable and
where rain gauge network densities are low. Any errors in the
rainfall estimates will clearly impact on the calibration parameter
sets in the various regions.

4. The overall result is that the input data and the parameter sets
established for both gauged and ungauged catchments are very
uncertain, and no attempts have yet been made to quantify the
uncertainty and to include it as part of the estimation process.
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All of these issues have been recurring themes within the international
literature that has been generated as part of PUB. The real question is
therefore – how can these scientific developments be properly incorporated
into the type of practical modelling approaches being used in (for example)
South Africa?

11.4 INCORPORATING SCIENCE INTO PRACTICE

Figure 11.1 illustrates an uncertainty framework that has been proposed
(Kapangaziwiri et al., 2009) for South Africa and which is based on some of
the developments that have emerged from PUB (e.g., Wagener et al., 2001;
Seibert and McDonnell, 2002; McIntyre et al., 2005; Wagener and Wheater,
2006; Yadav et al., 2007; Wagener et al., 2007; Wagener and Montanari,
2011). The starting point is to replace the traditional use of single parameter
sets with parameter uncertainty distributions based on a more objective
estimation method that can be applied to both gauged and ungauged basins
(Kapangaziwiri and Hughes, 2008; Kapangaziwiri et al., 2012). These
would be coupled with uncertain estimates of the climate (precipitation and
evaporation demand) through an appropriate sampling scheme to provide
multiple inputs into the hydrological model. If the model contains
components to simulate development impacts (abstractions, return flows,
etc.), uncertainty in the parameters used to quantify these can also be
included (Hughes and Mantel, 2010). The uncertainty ensembles generated
by the model would then be subjected to a constraint analysis using either
local observed data (which might also be considered uncertain) or regional
indices of hydrological response behaviour (Yadav et al., 2007;
Kapangaziwiri et al., 2012). The ensembles could be either accepted as all
behavioural (and representative of the real uncertainty in the parameter or
climate input estimates) or some could be considered to be non-behavioural
and therefore not used in further water resources assessment analyses
(Figure 11.1). The distinctions between behavioural and non-behavioural
ensembles could also be used in a feedback loop to identify which parameter
sets (or climate inputs) can be considered more representative than others
using some of the methods of sensitivity analysis (Saltelli et al., 2008).
There are two main messages resulting from the recent research work that has
been completed in South Africa: first, it is possible to develop an uncertainty
framework for the application of hydrological models that is aligned with
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current practices used for water resources estimation in South Africa, and;
second, the uncertainty framework (and many of its components) are based
on the scientific developments that have resulted from the PUB decade.
There remain a number of issues associated with the practical application of
the framework, many of them associated with reluctance by some
practitioners to change to new methods and the need to incorporate changes
into existing software products; however, there is a general acceptance by
the community of practitioners in South Africa that the framework
represents a valuable approach for the future, and several practitioners are
engaging with the research community to find suitable ways in which it can
be implemented in practice. This is an important step that provides further
opportunities for incorporating more of the recent PUB scientific
developments into the practice of hydrological modelling for the purposes
of water resources assessment. 
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Figure 11.1 Uncertainty framework for hydrological modelling.



11.5 PUB SUPPORT FOR THE PRACTICAL APPLICATION OF THE
FRAMEWORK

There were a number of developments that have been part of the PUB
contributions to hydrological modelling over the last decade or so, that have
the potential to contribute to the practical application of the proposed
framework. 

Parameter estimation procedures

One of the contributions that PUB has made is promoting the need for
understanding processes at the catchment scale and how hydrological
processes are distributed across complex landscapes. Specific topics include
the estimation of residence times and flow paths using isotope data,
improving our understanding of storages and fluxes under different
landscape conditions, and scaling rules that apply in different sized
catchments. While many of these advances in hydrological science remain
within the research domain, there is a great deal of potential for them to be
used in practice. Arguably, one of the critical issues is making the links
between process understanding (at different scales) and the structure of any
specific model being used in practice.
One of the important problems that has always been central to either
research or practice has been the transfer of parameters from donor
catchments (gauged) to other areas (ungauged). The principles of
uncertainty and the use of parameter value probability distributions are not
new to hydrological science, but it seems to be taking a long time for these
to be used in routine practice.

Constraining uncertain model ensemble outputs

Perhaps one of the major stumbling blocks to the use of uncertainty
approaches in practical hydrological modelling is the reliance on traditional
model calibration and validation approaches that are not applicable in
ungauged basins. The framework that has been proposed for South Africa
attempts to overcome this problem by adopting a common uncertainty
approach to all simulations and constraining the ensembles based on
whatever information is available. In a well-gauged catchment this would
mean that the final ensemble set would have a very narrow band of
uncertainty, while in other areas the uncertainty band would be much greater
and depend on the availability of information used as constraints.
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Developing a suitable suite of constraints therefore represents a potentially
more critical step in the process than defining the prior parameter
distributions. Developing constraints is also a field of research that has
enormous potential to be useful in practice. An important issue in any
practical uncertainty assessment is not only to try and reduce the uncertainty,
but also to ensure that the uncertainty is properly represented.
The basic concept of using constraints is to make use of information from
data-rich situations for use in data-poor situations and could include a wide
variety of different approaches including:

• Using hydrological indices based on some established approaches
that have proven value in the region of interest (e.g. SCS curve
numbers estimated from regional soils and land use data).

• Using hydrological state variables as well as streamflow data to
condition the model outputs, where estimates of the temporal change
in state variables are based on readily available remote sensing data
(GRACE, MODIS, etc.). Some of these techniques have been
applied within South Africa to a limited extent, but their full
potential has yet to be realized.

• Developing regional signatures of catchment response based on a
sound understanding of hydrological processes and readily available
physical catchment property data (soils, geology, land cover and use,
topography, etc.). The regional signatures could be related to any
component of the model output, such as mean runoff ratio, residence
times, catchment storage, ground water recharge or discharge, etc.

• Using focused short-term field campaigns to improve understanding
and reduce the uncertainty in some of the model inputs or outputs.

Feedback loops from constraint analysis to parameter estimation

Figure 11.1 offers two options to follow after the initial uncertainty
ensemble outputs from the model are assessed. The first is simply to reject
non-behavioural ensembles (identified as those that fall outside the
constraint boundaries referred to above and in Figure 11.1), while the second
is to feed information back to the parameter estimation process and try and
reduce the initial uncertainty in the parameter estimation process. This
feedback loop may be useful to identify critical processes or parameters that
generate most of the output uncertainty (sensitivity analysis) and this
represents an approach that uses model outputs to evaluate conceptual
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process understanding. The feedback loop may also be used to identify
parameter redundancy and contribute to more parsimonious models in future
applications. Alternatively, the feedback loop may also help to identify
critical deficiencies in the structure of a specific model.

Other issues

Some of the initial applications of the framework in South Africa have found
that the design of the parameter sampling approach is not a trivial issue if
realistic expressions of output uncertainty are to be achieved with models
having different complexities (Hughes et al., 2010, 2011) Even with a
relatively simple conceptual model, applied in a semi-distributed (sub-
catchment) format in a large basin, the sampling space is huge, and
designing an approach that efficiently (from a practical perspective) and
effectively samples that space does not appear to be straightforward
(Hughes et al., 2011). 
The use of alternative sources of model forcing data (e.g. satellite rainfall or
evapotranspiration) is an important issue in data-scarce regions, particularly
given the shrinkage in ground-based observation networks that is being
experienced in many countries of the world (World Water Assessment
Programme, 2009). These data sources have been the subject of many PUB
related contributions to the scientific literature, but evidence of their
successful use in practice is relatively scarce (Sawunyama and Hughes, 2010).
Demonstrating that uncertainty approaches are possible, practical, and
essential (Pappenberger and Beven, 2006) and communicating uncertainty
to hydrological model practitioners and water resources managers are
essential components of effectively putting PUB into practice. The
reluctance of some practitioners to adopt new approaches (that might
complicate their professional lives) is something that has to be overcome. It
is therefore the responsibility of the PUB science community to demonstrate
to the practitioners, as well as decision makers, that new approaches which
are scientifically sound, can be applied in practice and should result in more
informed water resources management decisions being made (Pappenberger
and Beven, 2006).
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11.6 CONCLUSIONS

There are certainly many PUB contributions that could be almost
immediately applied in practice with relatively small changes to either the
models or the methods of applying them used currently by practitioners.
There are many more PUB contributions that have the potential to improve
the practical use of hydrological models. Realizing that potential requires
further work to move the scientific developments from the research domain
into the domain of practice. It is unlikely that the initiative to achieve this
will come from the practitioners (with some exceptions) and therefore any
translation of research methods into practice will, by necessity, have to be
driven by those members of the PUB research community who are
interested in seeing their scientific developments applied. South Africa has
been used as a specific example in this document, but the general
experiences and concepts are arguably applicable to many other countries of
the world and particularly developing countries with sparse data sources.
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ESTIMATING MEAN MONTHLY STREAMFLOW IN THE
LUGENDA RIVER, NORTHERN MOZAMBIQUE

Michele Minihane1

1Department of Civil and Environmental Engineering, University of Washington,
Seattle, WA 98195

12.1 ABSTRACT

In many regions, there are not sufficient observational records to support water
resources planning efforts. In northern Mozambique, there are limited
observations of streamflow in the Lugenda River, a major tributary to the
Rovuma River. Four methods are evaluated for extending these observations to
produce a longer time series of mean monthly flow estimates in the Lugenda
River. The methods, three index-gauge methods and the historic seasonality of
flows by month, are evaluated using limited mean monthly streamflow
estimates based on in situ stream stage observations and streamflow rating
curves. Of these methods, the mean flow ratio provides the best performance
based on mean monthly flow, inclusion of interannual variability, and Nash-
Sutcliffe efficiency ratios. Gaps in the mean flow ratio estimates due to lack of
data at the index gauge are filled in using the historic seasonality by month.
This combination provides a 53-year time series of 640 mean monthly flow
estimates for the Lugenda River. While water resources planning efforts in this
region will benefit from additional in situ observations, these estimates provide
a starting point for current planning efforts and for future assessment of
changes in water resource availability under climate uncertainty.

12.2 RÉSUMÉ

Dans de nombreuses régions, il n’existe pas suffisamment de dossiers
d’observation pour soutenir les efforts de planification des ressources en
eau. Dans le nord du Mozambique, il existe des observations limitées du
débit de la rivière Lugenda, affluent majeur du fleuve Ruvuma. Quatre
méthodes sont évaluées en vue d’étendre ces observations dans le but de
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produire une série chronologique plus longue des estimations des débits
moyens mensuels dans la Lugenda. Les méthodes, trois méthodes de la
jauge-indice et le cycle saisonnier historique des débits par mois, sont
évaluées à l’aide d’estimations limitées du débit mensuel moyen basées sur
des observations in situ de la hauteur d’eau et des courbes des débits jaugés.
De ces méthodes, le coefficient de débit moyen offre le meilleur rendement
basé sur le débit mensuel moyen, l’inclusion de la variabilité interannuelle
et le coefficient d’efficacité de Nash-Sutcliffe. Les lacunes statistiques dans
les estimations du coefficient de débit moyen attribuables à un manque de
données à la jauge indice sont comblées grâce à la saisonnalité historique
par mois. Cette combinaison offre des séries chronologiques, échelonnées
sur 53 ans, de 640 estimations de débit mensuel moyen pour la rivière
Lugenda. Même si d’autres observations in situ s’avéreront utiles pour les
efforts de planification des ressources hydriques dans la région, ces
estimations offrent un point de départ pour les efforts de planification en
cours et pour l’évaluation future des changements touchant la disponibilité
des ressources hydriques dans un contexte d’incertitude climatique.

12.3 INTRODUCTION 

Water resources development planning is dependent on estimates of historic
and future streamflow conditions. The government of Mozambique is
considering water resources development in the Lugenda River basin,
potentially including medium-scale irrigated agriculture and hydropower. They
only have sporadic historic in situ observations of streamflow, however, which
can limit water resources planning. The purpose of this work is to extend the
time series of mean monthly streamflow estimates in the Lugenda River to
sufficiently support initial water resources planning efforts. The streamflow
extension method must be accessible to local water resources planners,
scientifically robust, and relevant to regional water resources planning goals.
The optimal streamflow record extension method for estimating a time series
of streamflow in any river depends on several factors, including the
availability of in situ observations and the goal(s) of the record extension
exercise. For water resources planning, including water supply strategy,
reservoir design, and land management, 10-50 years of data is required to
account for the impact of climate variability on various timescales (Ziervogel
et al., 2010). Examples in the literature suggest 25 years of monthly flow data
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can be sufficient for reservoir storage-yield design (McMahon et al., 2007)
or 30 years of baseline historic data can be used to evaluate future climate
impacts on water resource availability (Charlton et al., 2006). In at least one
study, a 22 year historic streamflow record that was being used by water
resources planners for designing water management strategy was shown to be
insufficient because longer historical records show a wider range of
hydrologic conditions that impacts design and system performance (Vano et
al., 2010). In contrast to these studies, mean monthly flow estimates are
available in the Lugenda River for only 169 out of 276 months over a 23-year
period (~60%). This is insufficient for most water resources planning goals. 
In rivers with insufficient in situ observations, regionalization of data from
nearby basins can be used to supplement those in situ observations in the
river of interest (e.g. Yadav et al., 2007). Most regionalization methods
require dense observations relative to what is actually available in poorly
gauged regions (Özçelik and Bayakan, 2009). If sufficient local data for
model parameterization, calibration, and hydrometeorological inputs are
available, hydrological models can be useful tools for streamflow estimation
(Abdulla and Lettenmaier, 1997; Xu and Singh, 2004). In data-sparse
regions, a potentially useful streamflow record extension approach is to use
an index gauge. Index gauge methods transfer information from a nearby
stream gauge to the location of interest using a relationship such as the ratio
of drainage areas or the ratios of mean annual flow (Xu and Singh, 2004).

12.4 STUDY AREA, DATA, AND METHODS

Study site description

The Lugenda River lies in northern Mozambique and is a major tributary to
the Rovuma River (Figure 12.1). The watershed is about 40,300 km2 and is
located between -12° and -14° latitude and 35° and 38° longitude. About
800 mm to 1200 mm of precipitation falls annually, mostly between
November and March; annual runoff is 200-600 mm. Higher precipitation and
runoff rates are typically found in the western, higher elevation portions of the
watershed, and lower rates are found in the eastern portion, closer to the sea.
The strong seasonality of the precipitation is reflected in the streamflow
seasonality. The watershed is covered with forests and some open grassland
areas with dispersed trees. Temperatures typically fall in the range of 15°C to
30°C with lower temperatures observed during the southern hemisphere
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winter months. There is a stream gauge, Q202, at which observations were
taken sporadically between 1960 and 1982. The Directorate National de Agua,
Moçambique (DNA) converted daily stage observations to monthly
streamflow estimates using rating curves developed in the 1950s through the
1970s. The Licungo River is located to the south of the Lugenda basin and
experiences similar hydrometeorological seasonality and climate. The gauge
in this river, Q91, is selected as the index gauge because it is the only gauge
in the region with regular observations over the period 1955-present. 
Data sources

Mean monthly streamflow estimates for select Mozambique rivers were
estimated by DNA based on in situ stage data and streamflow rating curves.
There are 166 mean monthly flow estimates based on in situ stream stage
observations in the Lugenda River and 618 mean monthly flow estimates in
the Licungo River over the period 1957-2010. The gauges began operations
in 1960 and 1957, respectively for the Lugenda River at Q202 and the
Licungo River at Q91; however, while the most recent observation at Q202
was taken in 1982, DNA is still actively recording gauge measurements in
the Licungo River at Q91. 
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Figure 12.1 Location map showing the Licungo and Lugenda Rivers, the stream gauges Q202
and Q91, and the respective drainage basins.



Lugenda streamflow estimation methods

For this work, mean monthly streamflow in the Lugenda River is estimated
using the drainage area ratio method, the mean flow ratio method, historic
seasonality of flows by month, and a statistical index gauge method. Other
regionalization methods and hydrological modelling both require more
hydrological data than is available in this region. The streamflow estimates
generated from a 20 year calibration period (1963-1982) are evaluated based
on observational estimates for the validation period of 1960-1962. 
The drainage area ratio method (Equation 1) is a simple index method that
scales the flow at the index gauge by the ratio of the drainage areas for the
two basins to estimate the flow in the basin of interest. 

(1)

where Qj(t) is the mean monthly estimated streamflow at the location of
interest, Qi(t) is the mean monthly streamflow at the index gauge, and Ai and
Aj are the areas of the index gauge drainage basin and the drainage basin of
interest, respectively. The drainage area ratio streamflow estimation method
can be used in the absence of any hydrologic information from the basin of
interest. This method works best when the two basins have the same runoff
ratio and similar precipitation events or similar seasonal streamflow
patterns. 
The next method is the mean flow ratio method (Equation 2), in which flows
at the index site are scaled by the ratio of mean annual flows for the station
of interest and the index station. 

(2)

where and are the mean annual flows at the index station and at the
station of interest, respectively. The mean flow ratio method assumes
hydrologic similarity between the index basin and the basin of interest,
particularly in the timing of precipitation and runoff. This method does
require an estimate of mean annual flow, which can be limiting in ungauged
basins and data-poor regions. 
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The third streamflow estimation method, seasonal flows by month, uses
long-term mean monthly flow by month (e.g., Jan., Feb., Mar., etc.) to
estimate the flow in that month for any given year. 

(3)

where the expression in the curly braces {} indicates a repeating sequence of
12 numbers, each of which is the mean monthly flow rate for one of the 12
calendar months (m = 1 to 12), for n years of the estimation period, and Qjm is

the mean monthly flow rate for each calendar month defined as 

where the summation subscript obs.m indicates all observations for month
m, and nobs.m is the number of observations for that month. This requires
sufficient historical observations in the basin of interest, which can be
problematic in ungauged regions. An advantage of this method is that it does
not require an index gauge and therefore does not assume hydrologic
similarity between two basins; however, it does not provide information
about interannual variability, which is an important factor for water
resources planning.
The final streamflow estimate comes from the Maintenance of Variance
Extension 3 (MOVE3) method, a statistical streamflow record extension
algorithm. MOVE3 is described by Vogel and Stedinger (1985) and
implemented in the Streamflow Record Extension Facilitator program
published by the U.S. Geological Survey (Granato 2009). MOVE3 is a
statistical method that provides a long streamflow time series with an
unbiased mean and variance based on a shorter streamflow time series at the
location of interest, and a longer time series of observations at an index
gauge. This method requires a significant number of in situ observations in
the river of interest as well as at an appropriate index gauge. 

Metrics for comparison 

In-channel observations for the Lugenda River are compared to the record
extension streamflow estimates using a set of performance metrics. The
comparison is done for a 3-year validation period (1960-1962) in which there
were observations for most months. Performance metrics include the bias in
average estimated monthly flow over the validation period, the representation
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of interannual variability, and the efficiency ratios defined below. The Nash-
Sutcliffe (N-S) efficiency ratio (Nash and Sutcliffe, 1970) is used in two forms.
First, the conventional N-S efficiency ratio is summarized in Equation 4. 

(4)

where Qobs (t) represents the time series of observed mean monthly flows,
Qest (t) represents estimated mean monthly flows using one of the methods
described here, and represents the long-term average of the observed
monthly flows. 
In addition, since squaring the terms in the N-S ratio has been criticized for
over-penalizing high flow estimates (e.g., McCuen, et al., 2006; Garrick et
al., 1978), an alternate form using only absolute values is also provided.
This alternate efficiency ratio is summarized in Equation 5. 

(5)

In both cases, efficiency ratio values greater than zero indicate that the
estimate is an improvement over using the mean monthly streamflow over
the entire historic record to estimate monthly flows. Values closer to one
indicate estimates that are closer to the observed values, and efficiency ratio
values less than zero indicate estimates that are worse than using the mean
monthly flow rate.

12.5 RESULTS AND DISCUSSION

Lugenda River streamflow estimates

Streamflow estimates from four different estimation methods are evaluated in
comparison to observed gauge data. A calibration period of 1963-1982 with a
total of 143 monthly observations at each gauge is used for methods that
require calibration data (mean flow ratio, seasonal flows by month, MOVE3).
The validation period for comparing streamflow estimates to the in situ
observations is 1960-1962, which includes 26 observations at each gauge.
During the validation period, when observations are available at both gauges,
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those values are used to calculate the mean annual flow ratio used to estimate
mean annual flow at Q202 in the Lugenda River for all other months. The four
streamflow estimation methods are evaluated based on their performance
compared to these 26 validation period observations. The index gauge
methods require observations in the index gauge to estimate flows at the point
of interest (i.e. observation at Q91 required to estimate streamflow at Q202);
missing data is shown as a gap in the streamflow estimation time series. 

Comparison of streamflow estimation methods

The comparisons of performance metrics for streamflow estimation methods
(Table 12.1 and Fig. 2) suggest that the seasonal flows by month and the
mean flow ratio outperform the drainage area ratio and MOVE3 methods.
The use of seasonality by month from the calibration period to predict flows
during a validation period scores the highest efficiency ratios with the
smallest deviation from the observation-based mean monthly flow rate;
however, this method does not provide any indication of inter-annual
variability, which is a key consideration for water resources planners. In
comparison, the mean flow ratio method has similar efficiency ratios but
does provide information about the inter-annual variability. As evident from
the table, the drainage area ratio method does not perform well by the
metrics used. In particular, the mean flow bias is greater and the efficiency
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Streamflow
estimation

method

Mean
flow

(m /s)3

Runoff
ratio

Mean
flow

difference

N-S
efficiency

ratio

Alternate
efficiency

ratio

Inter-
annual

variability

Observations
(validation period
only)

221 0.17 - - - -

Drainage area ratio 381 0.30 +72% - 1.1 - 0.34 Yes

Mean annual flow
ratio

160 0.13 -27% 0.47 0.40 Yes

Seasonal flows by
month (calibration
period)

183 0.14 -17% 0.56 0.43 No

MOVE3 497 0.39 +125% - 3.2 - 0.50 Yes

Table 12.1 Comparison of performance metrics for streamflow estimation methods.



ratios are negative. This is due to different drainage densities in the Lugenda
and Licungo River basins. The MOVE3 statistical method is not effective
either, as is evident by the negative efficiency ratios and the mean flow bias.
The MOVE3 performance might improve with additional observations,
though those observations are not available at this time. 
Effective water resources planning requires consideration of interannual
variability in addition to a low bias and high efficiency ratio. The mean flow
ratio outperforms the other three methods based on these comparison
criteria. Therefore, the mean flow ratio is selected as the primary method to
extend the mean monthly flow record in the Lugenda River.

Lugenda River streamflow record extension

The mean flow ratio index gauge at Q91 in the Licungo River extends the
169 mean monthly flow observations at Q202 in the Lugenda River to 618
mean monthly flow estimates; however, since the MFR relies on
observations at the index gauge, there are months for which the MFR

193

12 – Estimating Mean Monthly Streamflow in the Lugenda River, Northern Mozambique

0

500

1000

1500

2000

2500

3000

3500

M
e

a
n

m
o

n
t
h

ly
s
t
r
e

a
m

fl
o

w
(
m

3
/
s
)

Mean monthly streamflow estimates at Q202, Jan 1960-Dec 1962

Validation period in situ observations

Drainage area ratio

Mean annual flow ratio

Seasonal flows by month (calibration period only)

MOVE3 statistical streamflow extension

Figure 12.2 Estimated mean monthly streamflow in the Lugenda River at gauge Q202 for the
validation period using: in situ stage observations, the drainage area ratio, the
mean flow ratio, seasonal flows by month (from calibration period), and the
MOVE 3 statistical method.



method cannot be used to estimate flows in the Lugenda River. In fact, by
definition, none of the index gauge methods can estimate flows in the basin
of interest in the absence of streamflow estimates at the index gauge.
Therefore, the seasonal flows by month are used to fill the gaps in the MFR
time series. This combination of methods produces a 53 year times series
with 640 mean monthly flow estimates at Q202 in the Lugenda River
(Figure 12.3).
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Figure 12.3 Mean monthly flow observations (black diamonds) and estimates for the
Lugenda River over the period January 1957-April 2010: MFR estimates (grey
line with circles) with time series gaps filled by seasonal flows by month (grey
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12.6 CONCLUSIONS

Sparse, historic in situ observations in the Lugenda River combined with
more consistent monthly observations in the Licungo River provide a time
series of 640 estimated mean monthly flows in the Lugenda River for a
period of over 53 years. Both the mean flow ratio method and the seasonal
flows by month are straightforward methods that are accessible to local and
regional water resources planners. Using conventional performance metrics
of bias and efficiency ratios demonstrates that the methods are effective for
estimating flows in the Lugenda River based on historic flows and an index
gauge in the Licungo River. A monthly streamflow time series of this length
can be used for investigating water supply strategy, reservoir design, land
management, and as a starting point for evaluating possible future impacts
of climate change on water resource availability. These estimates are only
preliminary and should be supplemented by current in situ measurements
before water resources investments are made. These results, however,
provide a useful starting point for water resources planning and
development in the Lugenda River in northern Mozambique.
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CREATING A RUNOFF RECORD FOR AN
UNGAUGED BASIN: PEYTO GLACIER, 2002-2007

D. Scott Munro1

1Dept. of Geography, University of Toronto Mississauga, Ontario L5L 1C6

13.1 ABSTRACT

Peyto Glacier basin runoff was gauged by the Water Survey of Canada
during the 1965-74 International Hydrological Decade (IHD), but the gauge
was removed soon after. In 1989, the first year-round automatic weather
station was installed in the basin, the scope and quality of sensors improving
over the years, so that hourly records of solar radiation, air temperature,
humidity, wind speed, and precipitation have been available since 2002.
These data are the forcing function of a distributed basin model that
generates potential runoff due to snow and ice melt for each element of a 25
m resolution grid. Basin discharge is the aggregate of yield from storage in
each element of the grid, using a delay constant of 100 h for snow, 11.25 h
for ice, where ice cover increases over the melt season. An interesting
feature of model development is the use of runoff measurement data from
the IHD archive to find a suitable delay constant for ice, a value that is
consistent with the ~0.5 d used for ice by other modellers. Also of interest is
recent supraglacial runoff work on Peyto, for which a 10.5 h delay constant
is obtained, thus raising the possibility of significant storage in the
weathering crust of the ice surface. Past association of runoff measurements
with weather data pointed to the growing importance of solar radiation as
the melt season progressed, air temperature being important throughout.
Similar associations are evident for discharge estimates from this model. 

13.2 RÉSUMÉ

L’écoulement du bassin du glacier Peyto a été mesuré par la Division des
relevés hydrologiques du Canada au cours de la Décennie hydrologique
internationale (DHI) de 1965 à 1974. Cependant, la jauge a été retirée peu
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de temps après. En 1989, la première station météorologique automatique
exploitée à longueur d’année a été installée dans le bassin, la portée et la
qualité des capteurs étant améliorées au fil des ans, si bien que des
enregistrements horaires du rayonnement solaire, de la température de l’air,
de l’humidité, de la vitesse du vent et des précipitations sont disponibles
depuis 2002. Ces données constituent la fonction de forçage d’un modèle
distribué à l’échelle du bassin versant qui génère un écoulement potentiel
en raison de la fonte de la neige et de la glace pour chaque élément d’une
grille d’une résolution de 25 m. Le débit du bassin correspond au total du
produit de l’emmagasinement dans chaque élément de la grille, une
constante de temps de 100 h étant utilisée pour la neige et de 11,25 h pour
la glace là où la couverture de glace augmente pendant la saison de fonte.
Une caractéristique intéressante du développement de modèle est le recours
à des données de mesure de l’écoulement tirées des archives DHI pour
trouver une constante de temps appropriée pour la glace, soit une valeur
conforme à la valeur ~0,5 jour utilisée pour la glace par d’autres
modélisateurs. Il est également intéressant de noter les travaux récents
portant sur l’écoulement supraglaciaire dans le bassin du glacier Peyto,
pour lequel une constante de temps de 10,5 h est obtenue, ce qui soulève
par conséquent la possibilité d’un emmagasinement considérable dans
l’écorce d’altération de la surface de glace. L’association passée des
mesures d’écoulement avec des données météorologiques a fait ressortir
l’importance croissante du rayonnement solaire au fur et à mesure que la
saison de fonte progressait, la température de l’air étant importante tout au
long de cette période. Des associations similaires sont évidentes pour les
estimations de débit tirées de ce modèle. 

13.3 INTRODUCTION 

The problem of prediction in ungauged basins (PUB) addresses the many
cases of basins that have never been gauged. But what of PUB where there
are only past runoff records? How can the past inform the present in such a
case? The question is explored here with respect to the Peyto Glacier basin.
Peyto Glacier supplies runoff to Peyto Creek, which was gauged during
much of the International Hydrological Decade (IHD), but not long after.
The first automatic weather station (AWS) was installed in the basin 15
years after the end of the IHD, but without restoring the gauge. Thus one is
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presented with an excellent data input set for distributed basin runoff
modelling and an excellent validation data set, neither of which are from
corresponding time periods.
Given a recent AWS input record for the Peyto Glacier, the problem arose of
creating a matching runoff output record from a distributed model of its
ungauged basin. This raised the question of what role the IHD runoff data
could play in obtaining a plausible result. The purpose of this paper is to
show that a plausible outflow record can be created by tuning the model
flow response time to the IHD data set, using five-year hourly mean values
as the basis for comparison. This type of model could be applied to other
ungauged glacierized basins which abound in the Canadian Rockies.

13.4 BACKGROUND AND DATA RESOURCES

The Peyto Glacier basin (51°40' N, 116°33' W) covers a 22 km2 area on the
eastern side of the continental divide in Alberta, Canada. The basin outflow
was gauged from 1970-77, the 1971-74 period producing sufficiently long
continuous records from which to calculate hourly means. Glacier diminution
since then has reduced glacier area from approximately 60% of the basin area
to 50%, the most noticeable changes being to the tongue, which has receded
by nearly 1000 m and lost approximately 100 m of elevation. The current
glacier elevation range is 2200 to 3100 m above sea level.
The first AWS was installed at a base camp adjacent to the glacier tongue in
1989, at 2300 m above sea level. Improvements to the station have been
made over time such that recent records comprise hourly solar radiation, air
temperature, humidity, wind speed, and precipitation: the essential data
inputs for a distributed mass balance and melt runoff model. Precipitation
data are corrected for signal noise and gauge catch error, then partitioned
into rain or snow according to a 1.5 °C threshold. The part of the AWS
record used here covers six years from 2002-07.
A LiDAR based digital elevation model (DEM), with 25 m grid resolution,
was obtained in 2002 (Hopkinson et al., 2010). Slope and aspect were
determined for each grid element and used to make adjustments to the direct
and diffuse components of the solar radiation input, as described in Munro
and Young (1982). Elevation adjusted temperature and precipitation from
the AWS was applied to each grid element, such that it was possible for the
precipitation record to simultaneously distribute rain over the lower
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elevations of the basin, snow over the higher elevations. The distribution of
melting and non-melting conditions was similarly controlled, the threshold
temperature being 0 °C. 

13.5 MODELLING APPROACH

The key component of the model is the change in surface mass balance, Mi,j,
which is driven in hourly time steps, i, through each element, j, of the DEM:

(1)

where the main driving variables are precipitation, Prain/snow, global
radiation, K, air temperature and relative humidity, the latter two used to
model net long-wave radiation, L*, sensible heat flux, QH, and latent heat
flux, QE. Application of density, ice/snow, and latent heat of fusion, Lf, allow
conversion of energy to water equivalent. In winter, Mi,j accumulates to
form the snowpack that ablates over the summer, resulting in surface
meltwater production, qMi,j.The glacier soon becomes partitioned into snow
and ice melt elements, the latter increasing in number as the snow line
migrates up the glacier.
In each time step, qMi,j, is accumulated over j elements of ice and snow to
produce qMi for each cover type, each of which, following Hannah and
Gurnell (2001) is routed through a linear flow reservoir, Si:

(2)

Thus, aggregate grid element runoff yields total basin discharge,
q = qi,ice + qi,snow. The delay constant, Kice/snow, is set to 100 h for the snow
reservoir throughout the modelling exercise, but the ice reservoir value is
obtained by maximizing the correlation between modelled q and q from the
IHD data set. To do so, four-year hourly averages from the 2003-2007
modelled runoff series were calculated for each new value of Kice to provide
a sample size to match that of the IHD data. The strongest correlation
between the two data sets, r2 = 0.73, was achieved with Kice = 11.25 h.

qi = ; S = S + q qi i-1 M Mi
�

(i-1)Kice/snow

Si

�M Pi,j rain/snow= { �
K� �(1 ) + + +i/s H EL Q Q

*
�

i,j�ice/snow fL }
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13.6 RESULTS AND DISCUSSION

Measured and modelled basin discharge values are displayed in Figure 13.1,
where the four-year means and their constituent years are plotted. Notable in
the comparison is that inter-annual variability is smaller for modelled than for
measured q due to smoothing by the model. A range of approximately 1-25
m3s-1 contains the measured runoff variation over the years (Figure 13.1a)
while a 1-12 m3s-1 range applies to modelled runoff limits (Figure 13.1b).
Four-year mean values are mainly contained within a 2-10 m3s-1 range for
both types of runoff, though with more variability in the measured four-year
mean (Figure 1a). A mid-June runoff ‘spike’ that appears in the measurement
record is not replicated in the model record, possibly because of the changes
to the glacier that have occurred since measurements ended.

The suitability of an 11.25 h delay constant to model discharge is consistent
with other distributed modelling work (Baker et al., 1982; Hock and Noetzli,
1997; Yong et al., 2007). It is also comparable to a delay constant of 10.5 h
recently reported by Munro (2011) for supraglacial runoff, albeit based on a
small number of samples. The comparison is consistent with the idea of
most runoff delay being generated in the ice surface itself, with little
additional delay as a consequence of englacial and sub-glacial flow regimes
(e.g. Flowers, 2008). This requires the creation of significant storage
capacity in the ice surface, a requirement that is possibly met by the
development of a substantial surface weathering crust during the melt
period, as suggested in Munro (2011).
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Figure 13.1 Hourly discharge: a) measured q for 1971-74 and b) modelled q for 2003-06.
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To judge the importance of radiative and temperature forcing of the model
during the melt season, linear regressions of modelled q against these
variables were done for the months of May to September (Table 13.1).
Turning first to , which may be associated with baseflow, the global
radiation results are remarkably similar to those for temperature in showing
July-August maxima, when glacier runoff is expected to peak due to a
combination of strong solar energy input and extensive ice exposure. Taking
 as an indicator of runoff sensitivity to forcing, it appears that while q is
sensitive to air temperature forcing throughout the summer, sensitivity to
global radiation does not appear until July, when ice exposure becomes
important. This is also expressed in the value of r2 which is above 0.2 for
July and August, when r2 for temperature has doubled in value. The mid to
late summer emergence of global radiation as a factor in runoff prediction is

to be expected from the model structure, but it also replicates what Young
(1982) found when using measured q as the dependent variable.
The degree of correspondence between the two types of discharge record
was further explored by first normalizing q according to the mean daily
discharge, q24, thus removing the effects of day-to-day runoff variations.
The four-year mean values from each data set show comparable normalized
diurnal hydrograph ranges for q/q24 over much of the melt season (Figure
13.2), though correspondence is not as good in the early melt period (Figure
13.2b) as in the late melt period (Figure 13.2c). This is reflected in the
contrasting r2 values for the two periods (Figure 13.2a).
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May June July August September

Global

Radiation

(W m )-2

r2

� (m s /W m )3 -1 -2

� m s )3 -1(

0.003

-0.000

1.471

0.001

0.000

2.602

0.037

0.004

3.754

0.205

0.011

2.788

0.213

0.012

0.887

Air

Temperature

(°C)

r2

� (m s /°C)3 -1

� (m s )3 -1

0.336

0.048

1.452

0.293

0.096

2.203

0.376

0.233

3.057

0.582

0.306

3.342

0.621

0.246

2.250

Table 13.1 Linear regression results of Y =  + X, where Y is model q (m3s-1) and X is
measured global radiation or air temperature.



The poor correspondence in the early melt period, due to relatively small
diurnal variation in measured q/q24, probably reflects development of the
englacial-subglacial drainage system, which is not a component of the
model used here. The observation that r2 = 0.78 for the late summer melt
period is close to r2 = 0.73 for the whole melt period, however, suggests that
sub-surface drainage develops to maturity fairly quickly, and thus allowed a
surface runoff model to yield plausible estimates of basin discharge. 

13.7 CONCLUDING REMARKS

Although the model discharge record is not real, it is plausible in
comparison to earlier runoff measurements for the Peyto Glacier basin, thus
indicating capture of the key driving mechanisms. The fact that the model
works as well as it does suggests a glacier hydrologic system that is strongly
driven by glacier surface processes, notably seasonal snow line migration
and weathering crust development, the latter of which itself merits further
study. Because this modelled runoff record seems to capture the features of
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Figure 13.2 Normalized discharge comparisons: a) point comparisons for early (crosses,
r2=0.51) and late (dots, r2=0.78) melt season and b), c) day of year
comparisons, where solid lines are model values.



a measured runoff record, despite it being from far in the past, it may be
useful as an assessment tool for other hydrological models that use different
approaches and spatial resolutions. 
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PARAMETERIZATION OF A PHYSICAL HYDROLOGICAL
MODEL FOR A MOUNTAIN REGION IN ALBERTA
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14.1 ABSTRACT

The primary objective of the IAHS initiative “Predictions in ungauged
basins (PUB)” was to reduce uncertainty in hydrological predictions and to
avoid the need for statistical analyses and model calibration. This can be
achieved by calculating spatially explicit hydro-climatological parameters,
such as spatially explicit precipitation and air temperatures, and the
integration of high resolution solar radiation calculations. This case study
describes some important methods developed by the author over recent
years to provide the hydrological modeller with spatially explicit and
physically based hydrological parameters. Results for an application of the
ACRU agro-hydrological modelling system in the upper North
Saskatchewan River Basin are described, where daily variables of air
temperature and snow water equivalent are compared against observed data.

14.2 RÉSUMÉ

Le principal objectif de l’initiative Décennie de prévisions en bassins non
jaugés (PBNJ) de l’AISH consiste à réduire l’incertitude liée aux prévisions
hydrologiques et à éviter le besoin d’analyses statistiques et d’étalonnage de
modèle. Il est possible d’y arriver en calculant des paramètres
hydroclimatologiques spatialement explicites, comme les données
spatialement explicites sur les précipitations et les températures de l’air, et
grâce à l’intégration de calculs du rayonnement solaire à haute résolution.
La présente étude de cas décrit certaines méthodes importantes élaborées par
l’auteur au cours des dernières années afin de fournir au modélisateur
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hydrologique des paramètres hydrologiques spatialement explicites et basés
sur des critères physiques. Les résultats d’une application du système de
modélisation agro-hydrologique ACRU dans le bassin du cours supérieur de
la rivière Saskatchewan-Nord sont décrits, les variables quotidiennes de la
température de l’air et de l’équivalent en eau de la neige étant comparés par
rapport aux données observées.

14.3 INTRODUCTION 

Many important watersheds are ungauged, and only physically based,
spatially distributed, or semi-distributed hydrological simulation models can
provide estimates of streamflow time series and other hydrological processes,
such as soil moisture dynamics, under historical and a range of future
environmental change conditions, as they are able to capture the spatial
variability of hydrological processes throughout complex watersheds
(Bathurst et al., 2004). In hybrid watersheds both snowmelt and rainfall events
occur, and consequently the watershed behaviour is dominated by contrasting
hydrological processes, and may respond uniquely to changes of the future
climate (Loukas and Quick, 1996; Whitfield et al., 2003). While models are
simplifications of reality, they are important tools in assessing future scenarios
for water management strategies if accurately parameterized and verified
(Beven, 1989). Rigorous parameterization of a model is a crucial step to avoid
problems during the model verification process (Refsgaard and Storm , 1996).
Parameters should be based on observed data, or should be estimated within a
physically acceptable range based on available data and literature sources. 
The primary objective of the IAHS initiative “Predictions in ungauged basins
(PUB)” was to reduce uncertainty in hydrological predictions and to avoid the
need for statistical analyses and model calibration. This can be achieved by
calculating spatially explicit hydro-climatological parameters, such as
spatially explicit precipitation and air temperatures, and the integration of high
resolution solar radiation calculations. The ACRU agro-hydrological
modelling system (Schulze, 1995) is a physical-conceptual, semi-distributed
hydrological modelling system designed to be responsive to changes in land
use and climate. The model has been updated to include specific high-
mountain and cold climate routines and is applied to simulate impacts of land
cover and climate change on the hydrological behaviour of numerous Rocky
Mountain watersheds.  The challenges of setting up a physically based
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hydrological model are usually similar for ungauged and gauged watersheds,
as the governing elements of the hydrological cycle (precipitation, actual
evapotranspiration, soil moisture, and groundwater storage) can typically not
be verified against observed data (with the exception of research watersheds).
Therefore, in all hydrological simulations, it is important to maximize the
predictive value of available information (climate, soils, and vegetation) by
applying GIS techniques combined with improved hydrological process
algorithms, thus reducing the predictive uncertainty of the simulations. The
objective of this case study is to describe some of the more important methods
developed by the author over recent years to provide the hydrological
modeller with spatially explicit and physically based hydrological parameters,
and to showcase a study where these methods have been applied. 

14.4 METHODS

The procedures described here were applied for the parameterization and
verification analyses of the Cline River watershed, the headwater of the
North Saskatchewan River Basin, using the ACRU agro-hydrological
modelling system. The Cline River watershed has an area of 3856 km2 and
consists of alpine, sub-alpine, and foothills landscapes located on the eastern
slopes of Alberta’s Rocky Mountains. The study area was divided into
hydrological response units (HRUs), which were delineated based on 100 m
elevation bands, nine land cover classes, four mean annual radiation classes,
and watershed boundaries. GIS overlay analysis resulted in 308 HRUs, with
an average HRU area of 12.5 km2. Each HRU was parameterized to have a
unique combination of hydrological variables. The area of each HRU was
calculated based on its true, sloped area, as the planimetric area derived
from a GIS is underestimated in steeply sloped terrain. The omission of
correcting for sloped areas would result in incorrect calculations of
interception volumes, soil moisture storages, groundwater recharge rates,
actual evapotranspiration volumes, and runoff coefficients (Kienzle, 2010).
To appropriately transfer daily climate time series observed at a climate station
situated in a valley at the outlet of the watershed to all the HRUs, monthly
normal climate surfaces were required to calculate monthly precipitation and
temperature correction factors. As the climate data in the study area were too
sparse and incomplete to be able to interpolate a meaningful climate surface,
the Parameter-elevation Regressions on Independent Slopes Model (PRISM),
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developed by Daly et al. (2008), was used. The 1971-2000 monthly normal
PRISM surfaces of minimum and maximum temperature and precipitation
were available at a 2 km resolution. A smoothing algorithm was implemented
to avoid potentially large jumps in precipitation values along the edges of the
PRISM grid cells. The smoothing was achieved by using the centroids of each
2 km spaced raster cell value as input for a spline with tension spatial
interpolation with a spatial resolution of 100 m. 
Daily short-wave radiation and mean monthly potential sunshine hours were
calculated for each DEM grid cell (100 m resolution) by calculating daily
short-wave radiation using the Area Solar Radiation tool in ArcGIS
(Environmental Systems Research Institute, 2008). Incoming radiation is
calculated over an entire year using 1/2 hour time increments in a GIS, based
on latitude, topography, hemispherical viewshed, atmospheric
transmissivity, proportion of diffuse radiation, and elevation (Fu and Rich,
2000). Mean monthly atmospheric transmissivity and diffuse radiation were
based on observations from the three nearest climate stations (located at
Ellerslie, Edmonton City Centre Airport, and Edmonton International
Airport) up to 350 km northeast of the center of the study site.
When temperature values are required where no measurements are
available, lapse rates are commonly used to adjust the minimum and
maximum temperatures measured at the nearest climate stations to the
location under consideration (e.g., Martinec and Rango, 1986; Ahl et al.,
2008). The use of mean annual lapse rates must be avoided, as lapse rates
typically fluctuate strongly during the course of a season. Mean monthly
lapse rates can be estimated from surrounding climate stations and their
associated elevations, or from the available PRISM temperature surfaces. In
this updated version of ACRU, the lapse rate adjusted daily air temperatures
from the base station are only used for the separation of precipitation into
snow and rain. Snowmelt, sublimation, and evapotranspiration are
understood to depend on near-ground temperatures (Bowling et al., 2004),
influenced by the local characteristics. In order to enable different daily air
temperatures as a function of exposition, i.e. north vs. south facing slopes,
or valleys that rarely receive direct incoming radiation, the lapse rate
adjusted air temperatures are further corrected according to daily incoming
radiation and land cover. A variation of an approach described by Glassy and
Running (1994) and used in MTCLIM (Thornton et al., 1997) is applied. 
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For the calculation of the slope and exposure adjusted daily temperature, mean
monthly incoming radiation was calculated in the GIS twice: once for flat
topography, and once for sloped topography (Fig. 1). The first assumes that
DEM grid cells have a slope of zero, thus still adjusting incoming radiation for
elevation, atmospheric transmissivity, diffuse radiation, and shading effects;
the second addresses slope and aspect. The ratio between the two radiation
surfaces is then calculated (Kienzle, 2010). In ACRU, daily minimum and
maximum temperatures are then adjusted using that ratio (Figure 14.1). In a
second step, radiation adjusted daily minimum and maximum temperatures
are further adjusted as a function of the leaf area index (LAI), as suggested by
Hungerford et al. (1989). As the LAI varies seasonally, the LAI is changed on
a monthly basis. The source for LAI data was MODIS (National Snow and Ice
Data Center, 2009). The result of these complex calculations is that each
combination of elevation, slope, and land cover has a unique, and fairly
realistic, set of daily minimum and maximum temperatures. This is considered
to be a critical step towards realistic evapotranspiration calculations.
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Figure 14.1 Flowchart of temperature correction in ACRU. The grey boxes are data inputs.



Similar in principle to the spatial estimation of air temperature, other climate
variables such as daily observed (or estimated) radiation, relative humidity,
and wind speed, can be transferred from the best suitable climate station to
each HRU by calculating correction factors between the climate station and
each HRU. Where no observations are available, mean monthly estimations
of those variables for the region can be used. Daily sunshine hours are also
estimated from the DEM using GIS functions, and are then reduced for all
days with precipitation.
The threshold temperature that determines whether precipitation falls as rain
or snow, as well as the temperature range within which a proportion of
precipitation falls as rain, were calculated for each HRU, based on its
average elevation and an empirical equation developed for the study area
(Kienzle, 2008) which was based on a curvi-linear relationship between
mean daily air temperature and the proportion of precipitation that falls as
snow. Snow canopy interception and melt, snowpack evolution, rain on
snow events, snow density, and the areas covered by snow during the
melting phase of snow are all simulated in a physically explicit manner. The
snowmelt simulation is based on an empirically derived dynamic and HRU
specific snowmelt factor, which is determined for each day using a
regression equation. This equation was established using mean monthly net
radiation and albedo estimates (calculated in ACRU) and observed
snowmelt from snow course and snow pillow data in two Rocky Mountain
watersheds (St. Mary’s watershed in Montana, and the upper North
Saskatchewan River basin in Alberta – UNSRB). In ACRU, snow water
equivalent (SWE) is simulated differently in forested HRUs than in non-
forested HRUs. When an HRU is predominantly forested, estimations of
HRU specific canopy cover percentages are required, which affect
calculations of daily snow interception, and subsequently albedo, net
radiation, and snowmelt. 

14.5 VERIFICATION OF AIR TEMPERATURE ESTIMATES AND SNOW
WATER EQUIVALENT

Observed daily maximum and minimum temperature data from ten short-
term and seasonal climate stations (Environment Canada, 2008) within the
UNSRB were used to verify that the daily air temperatures for the HRUs
were estimated correctly. Between five and 42 years of observations were
available, totaling 37 604 days. Figure 14.2(a) shows a scatter plot for
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simulated and observed mean daily air temperature values. Monthly mean
air temperatures are slightly over-simulated, but are statistically not
different. Monthly differences between variances were low (-3.79%), and
the coefficient of determination was 0.98, with a regression slope of 0.97.
Figure 14.2(b) shows a scatter plot for daily simulated and observed snow
water equivalent (SWE) values. The 15 available snow courses had a total of
882 observations, and the two snow pillows had a total of 7625 observations,
resulting in a total of 8507 days with observed data. The coefficient of
determination was 0.63, with a slope of the regression line of 0.81, indicating
a systematic and overall under-simulation. The difference in simulated and
observed variances was 4%. When compared to all observed SWE values,
overall SWE depths were simulated fairly well, considering the geographical
extent of the watershed, and the few climate base stations available to drive
the model. One major challenge in snow simulations is the comparison with
observed data, as both observed snow course and snow pillow data are not
necessarily representative of a larger, forested area, such as an HRU. The
major problem is that both snow courses and snow pillows measure snow in
clearings, where snow accumulation and snowmelt are influenced by snow
redistribution and solar radiation, which are not representative of closed
forest stands (Gary, 1974; Brown and Braaten, 1998; Pomeroy et al., 2002).
Taking into account the difficulties of representative snow measurements
within a watershed due to very diverse forests in terms of local tree density,
snow interception, and snowmelt dynamics, SWE was reasonably well
simulated, as was the timing of snowmelt. 
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Figure 14.2 Scatter plots for simulated and observed mean daily (a) air temperature and
(b) snow water equivalent (SWE). Solid line is 1:1 line, the dashed line is the
regression equation shown.



Annual potential evapotranspiration (PET) was simulated to range from
about 500 mm to 1000 mm and compared very well, both spatially and in
magnitudes, against values mapped in the Hydrological Atlas of Canada
(1978). The seasonality of PET was validated against a total of 100 months
(May to October) of observations at three A-pan stations in the vicinity of
the watershed (r2 of 0.78, difference in variance of 2.5%, slope of the
regression line 0.87).

14.6 CONCLUSIONS

The spatially explicit parameterization and verification of air temperature,
SWE and PET facilitated the successful simulation of both historical and
future streamflow under a range of climate change conditions, described in
detail by Nemeth et al. (2012) and Kienzle et al. (2011). Whilst other
hydrological models would likely apply different approaches, this brief case
study demonstrated the potential of sophisticated spatial analyses in the
parameterization of both gauged and ungauged watersheds, thus enabling
the hydrological modeller to estimate important, usually not readily
available, climate variables for the hydrological simulation of ungauged
hybrid mountain watersheds.
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Figure 14.3 Eleven years of simulated and observed SWE at Nigel Creek snow course, in the
western part of the UNSRB.



REGIONALIZATION OF RAINFALL-STREAMFLOW
MODELS FOR ESTIMATING FLOWS IN UNGAUGED

BASINS: TOWARDS REDUCING UNCERTAINTY

Ian G. Littlewood1

1IGL Environment, Didcot, OX11 7XN, United Kingdom

15.1 ABSTRACT

Published statistical relationships linking physical basin attributes to
calibrated parameters of rainfall-streamflow models (regionalization) are
typically based on analysis of daily hydrometric data and often exhibit large
uncertainty. The paper draws upon earlier work to discuss the component of
this uncertainty caused by loss of information when model parameters are
calibrated using data that are too coarse temporally to capture the rainfall-
streamflow dynamics of a basin. Although a model parameter might be
calibrated with good precision from daily data it can be massively
inaccurate, especially if it relates to a quick-response component of
streamflow. For a 10.6 km2 basin in Wales, a quick-flow model parameter
calibrated using daily data has a precision of +/-2% and an inaccuracy of
+430% relative to it being calibrated using hourly data. About 42% of the
absolute inaccuracy in this case is accounted for by loss of information in
daily effective rainfall, leaving 58% caused by loss of information in daily
streamflow data. Inaccurate model parameters employed as the dependent
variable in regression analyses contribute to poor precision of
regionalization equations. The paper argues for the use of sub-daily data
when necessary, in pursuit of reductions in the uncertainties associated with
regionalization equations and related estimation of flows at ungauged sites.

15.2 RÉSUMÉ

Les relations statistiques publiées qui relient les caractéristiques physiques du
bassin hydrographique aux paramètres calibrés des modèles pluie-débit
(régionalisation) sont en général basées sur l’analyse des données
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hydrométriques quotidiennes et affichent souvent une grande incertitude.
L’article s’inspire de travaux antérieurs pour aborder l’élément de cette
incertitude causé par la perte d’information lorsque les paramètres du modèle
sont étalonnés à l’aide de données considérées comme trop brutes d’un point
de vue temporel pour capter la dynamique pluie-débit d’un bassin. Même si les
paramètres du modèle peuvent être étalonnés avec une bonne précision à partir
des données quotidiennes, ils peuvent être massivement inexacts, en particulier
s’ils se rapportent à une composante de réponse rapide du débit. Pour un bassin
de 10,6 km2 au Pays de Galles, un paramètre de modèle de débit rapide calibré
à l’aide de données quotidiennes offre une précision de +/-2 % et une
inexactitude de +430 % relativement au même modèle calibré à l’aide de
données horaires. Environ 42 % de l’inexactitude absolue dans ce cas
s’explique par la perte d’information relativement à la pluie efficace
quotidienne, ce qui laisse un pourcentage de 58 % attribuable à la perte
d’information liée aux données quotidiennes sur les débits. Les paramètres de
modèle inexacts employés en tant que variable dépendante dans les analyses de
régression contribuent à une piètre précision des équations de régionalisation.
L’article préconise l’utilisation de données infra-quotidiennes en cas de besoin,
à des fins de réduction des incertitudes associées aux équations de
régionalisation et à l’estimation connexe des débits à des sites non jaugés.

15.3 INTRODUCTION

For the purposes of this article, gauged basins are those for which rainfall
and streamflow time series data are available, allowing rainfall-streamflow
conceptual modelling. Secondary hydrometeorological data required for the
modelling, e.g. air temperature, are also available for gauged basins.
Ungauged basins do not have streamflow data, but they do have time series
data for rainfall, air temperature, etc. Measures of uncertainty associated
with statistical relationships for gauged basins, between a given parameter
of a rainfall-streamflow model and physical basin characteristics (slopes,
drainage density, etc.), are typically and disappointingly large. This article
describes a method by which it should be possible to reduce this uncertainty.
This, in turn, would improve estimates for ungauged basins (using
regionalized statistical relationships for gauged basins) of (a) model
parameters from physical basin characteristics, and (b) streamflow time
series generated from the regionalized model parameters and recorded
rainfall time series.
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As data time-step increases (e.g. from hourly to daily), information is lost
from rainfall and streamflow time series. This loss of information can be a
dominant contributor to uncertainty (a combination of precision and
accuracy) in calibrated rainfall-streamflow model parameters for gauged
basins. For example, as will be seen, calibrated model parameters can
become increasingly inaccurate as data time-step increases, even if their
precision is good. Model parameters that can be shown to be more accurate
should lead to an increase in the precision associated with regionalization
equations used for estimating model parameters from the physical
characteristics of ungauged basins. 
For the 10.6 km2 Wye at Cefn Brwyn research catchment in Wales,
Littlewood and Croke (2008) show that each of the five parameters of a
discrete-time IHACRES model (e.g., Jakeman et al., 1990; Jakeman and
Hornberger, 1993) can be calibrated with good, to very good, precision
from daily data; however, the accuracies of these parameters can be poor or
extremely poor. The five model parameters in the version of IHACRES
applied by Littlewood and Croke (2008) are (with dimensions in square
brackets): a catchment drying time constant, w [T]; the depth of a
conceptual catchment wetness store, c [L]; a quick-flow decay time
constant, (q) [T]; a slow flow time constant, (s) [T]; and, a slow flow
index, SFI [-] analogous to well-known baseflow indices. The Wye at Cefn
Brwyn is a grassland upland basin and one of the wettest gauged
catchments in England and Wales (annual precipitation is about 2487 mm
and streamflow is about 2182 mm, or 85% of precipitation). It has a flashy
flow regime; hydrographs plotted using daily data are smoothed versions of
the real thing and therefore information is lost, especially at and near
streamflow peaks. Similarly, information is lost in daily rainfall data. In the
worst case of IHACRES model parameter inaccuracy for Cefn Brwyn,
although (q) was calibrated using daily data by Littlewood and Croke
(2008) with a precision of about +/-2%, its inaccuracy (relative to the value
of (q) calibrated using hourly data) was about 430%. The other four model
parameters calibrated using daily data had poorer precision but better
(though still poor) accuracy.
Daily data are likely to be too coarse to capture the dynamics of flashy
catchments included in a set of gauged basins employed for model
parameter regionalization. Inaccurate model parameters for basins in this
category will cause some of the imprecision associated with regionalization
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equations that link model parameters with physical catchment descriptors
and, therefore, some of the uncertainty associated with streamflow
predictions, based on those regionalization equations, for ungauged basins. 
The objective of this paper is to develop the hypothesis that by using
appropriately standardized values of discrete-time rainfall-streamflow
model parameters (gauged basins) it should be possible to increase the
precision associated with regionalization equations used for estimating
model parameters from the physical characteristics of ungauged basins. 

15.4 EFFECTS OF DATA TIME-STEP ON THE VALUES OF
CALIBRATED, DISCRETE-TIME, RAINFALL – STREAMFLOW
MODEL PARAMETERS

The accuracy of a given model parameter calibrated using n-hourly data
(n > 1 hour) is defined here for Cefn Brwyn as the difference between the
values of that parameter calibrated using (a) the n-hourly, and (b) hourly
data. Figure 15.1 shows the trajectories of calibrated Cefn Brwyn IHACRES
model parameter values as the logarithm of data time-step changes
(Littlewood and Croke, 2008); it also illustrates the definition of accuracy
used here and gives accuracy and precision values associated with each of
the model parameters when calibrated using daily data. In Figure 15.1, the
horizontal dashed lines represent the standardized model parameter, i.e.
calibrated using hourly data, and the vertical arrows indicate the inaccuracy
in a model parameter calibrated using daily data. In Figure 15.1, “pp” for
SFI means percentage points. The error bars on each point in Figure 15.1
indicate the precision on a calibrated model parameter (e.g. +/-10% for w
calibrated using daily data). The precision on a model parameter (Littlewood
and Croke, 2008) is the 95% confidence interval derived from a fine search
in the vicinity of the optimized set of parameter values, selecting model
parameter sets that gave a coefficient of determination (comparing modelled
and observed streamflow) of more than 99.9% of its maximum value. Figure
15.1 shows that each of the five Cefn Brwyn IHACRES parameters
approaches a stable value as the logarithm of data time-step decreases to 1
hour, providing a reference point for assessing the accuracy of that
parameter calibrated using n-hourly data (n > 1 hour). IHACRES calibrated
for catchments with more, or less, dynamic streamflow responses than at
Cefn Brwyn may exhibit parameter value stability at a data time-step of less,
or more, than 1 hour respectively. 
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Littlewood et al. (2010) used the continuous-time, data-based mechanistic,
modelling methodology (e.g., Young and Romanowicz, 2004; Young and
Garnier, 2006) to corroborate the stability of the Cefn Brwyn IHACRES
parameters calibrated using hourly data. Extrapolation of the model
parameter trajectories to a data time-step of zero (data time-step plotted
arithmetically – not shown) gives estimates of the parameters of an
instantaneous rainfall-streamflow model comprising an instantaneous loss
module that generates effective rainfall input to an instantaneous unit
hydrograph module.

The trajectories shown in Figure 15.1 correspond to a 210-day calibration
period (6 December, 1987 to 2 July, 1988). IHACRES and other discrete-
time, rainfall-streamflow models with about the same number of parameters
can be expected to exhibit similar model parameter trajectories when
calibrated for basins with a dynamic streamflow response comparable to that
for Cefn Brwyn. Less dynamic catchments than Cefn Brwyn may not exhibit
such well defined trajectories, especially if the quality of the hydrometric
data is not as good as it is for Cefn Brwyn. Catchment scale rainfall-
streamflow models with more than about 6 parameters (Perrin et al., 2001)
are likely to be over-parameterized when calibrated using rainfall and
streamflow data (and perhaps an additional evapotranspiration surrogate
variable, e.g. air temperature), so may not produce such well-defined and
well-behaved trajectories as those shown in Figure 15.1. 
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Figure 15.1 Trajectories of Cefn Brwyn IHACRES parameters showing model parameter
precisions for each data time-step and accuracies for a daily data time-step.



Employing the same model calibration period (6 December 1987 to 2 July
1988), Littlewood and Croke (2013) present estimates of the separate
contributions to Cefn Brwyn IHACRES model parameter inaccuracy caused
by loss of information in the daily rainfall and streamflow data respectively.
To facilitate this investigation the hourly rainfall and streamflow data were
assumed to be perfect. About 42% of the inaccuracy in (q) calibrated using
daily data (19.9 - 3.76 = 16.1 hours, +430% in Figure 15.1) is accounted for
by loss of information in the effective rainfall, leaving 58% caused by loss
of information in daily streamflow data. For (s), which has an inaccuracy of
455 - 216 = 239 hours (+110% in Figure 15.1), the corresponding values are
85% and 15%. So, for (q) calibrated using daily data, the very large
inaccuracy is due slightly more to loss of information in daily streamflow
than in effective rainfall, whereas for the corresponding (s), the lower (but
still large) inaccuracy is, as expected, caused largely by loss of information
in the effective rainfall data rather than in the streamflow data.

15.5 REGIONALIZATION OF DISCRETE-TIME MODEL PARAMETERS

Several rainfall-streamflow model regionalization schemes have employed
daily rainfall and streamflow data to calibrate discrete-time models for sets of
gauged basins. For any flashy catchments in these sets, daily data are likely to
be too coarse temporally to allow accurate calibration of each of the model
parameters, especially parameters associated with quick-response components
of streamflow. Whatever discrete-time rainfall-streamflow model is used, the
flashier the streamflow response, the more inaccurate some of the model
parameters are likely to be when calibrated using daily data, even if they are
estimated with good precision. Qualitatively, the parameter inaccuracy, which
will be different for different catchments, will contribute to the imprecision
associated with model parameter regionalization equations, as follows. 
For each gauged catchment considered in a regionalization study, a given
discrete-time rainfall-streamflow model calibrated using daily data provides
model parameter values (P1, P2, …, Pn; n = number of model parameters).
The Pn are regressed (usually individually) on catchment descriptors
(X1, X2, … Xm; m = number of catchment descriptors for a given P). Equation 1
is then available for estimating a model parameter ( ) from X1, X2, … Xm.

(1))...,,,( 21
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When similar relationships for all n model parameters have been
established, flow hydrographs can be estimated using (a) model parameters
estimated from the relationships, and (b) time series of rainfall and whatever
other hydrometeorological variables are used to drive the rainfall-
streamflow model (e.g., air temperature, soil moisture content). A plot of Pn
against for gauged basins might exhibit a scatter as illustrated
schematically in the left-hand side of Figure 15.2.

If, however, standardized values of model parameters are used
(P1*, P2*, …, Pn*) instead of (P1, P2, …, Pn), where P* means a model
parameter value that can be shown to be accurate and essentially
independent of the data time-step used for its calibration, e.g. using hourly
data for the Cefn Brwyn IHACRES model (Figure 15.1), then a reasonable
hypothesis is that the scatter between Pn* and for gauged basins should
be less than between correponding Pn and , as illustrated in Figure 15.2. 

15.6 CONCLUDING REMARKS

Subject to the availability of suitable sub-daily flow data (from which
archived daily flows are usually derived) and sub-daily basin rainfall data, a
testable hypothesis has been developed. It is expected that the precision
associated with rainfall-streamflow model parameter regionalization
relationships will improve when demonstrably accurate model parameters
are used for all the gauged basins considered rather than using some likely

^
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^
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*
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Figure 15.2 Schematic of expected improvement in rainfall-streamflow model parameter
regionalization (a) non-standardized parameters and (b) standardized parameters
(see text for further explanation).



to be inaccurate for flashy catchments. For cases where daily data have been
used for all basins in the set of gauged basins considered, the magnitude of
the improvement in precision associated model parameter regionalization is
expected to be dependent on the number of flashy basins in the set and the
different degrees to which daily data adequately capture the dynamics of
each of those flashy catchments. 
A reviewer of this article asked, very reasonably, about work that quantified
this hypothesized improvement in precision associated with rainfall-
streamflow model parameter regionalization equations. Unfortunately, the
necessary work has yet to be undertaken. It would be necessary to re-run a
well-documented model parameter regionalization exercise that had used
daily (for example) data for each of the gauged catchments (during which
inaccurate model parameters for flashy basins were probably generated),
this time using sub-daily data to calibrate more accurate model parameters
for any flashy catchments included in the set of gauged basins employed.
Then, new relationships between each model parameter and physical
catchment descriptors would need to be established and their associated
precisions compared with those of the previous relationships. This
substantial task is beyond the scope of this paper, the purpose of which is to
expose the issue so that others might consider it in the context of their
rainfall-streamflow model parameter regionalization studies. Better
regionalization equations obtained through using demonstrably accurate
estimates of rainfall-streamflow model parameters for flashy gauged
catchments should lead to better predictions of streamflow for ungauged
basins.
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16.1 ABSTRACT

Two different approaches to estimate the natural streamflow at both gauged
and ungauged sites in Alberta are described. The first method uses the
physically based distributed model MIKE SHE/MIKE 11 and the other
makes use of flow duration curves (FDC). These methods are practical only
where flow measurements are available.

16.2 RÉSUMÉ

Sont décrites deux différentes approches visant à estimer l’écoulement
naturel à des sites jaugés et non jaugés en Alberta. La première méthode fait
appel au modèle à paramètres physiques distribués MIKE SHE/MIKE 11 et
l’autre fait appel aux courbes des débits classés (CDC). Ces méthodes sont
pratiques seulement lorsque des mesures du débit sont disponibles.

16.3 INTRODUCTION

Knowledge of how much water is naturally available, when it is available, and
its variability is important for planning and operational purposes including
regulatory aspects such as water licensing and compliance. Quantification of
these natural water supplies is often hindered by the lack of hydrological,
climatic, and other relevant data. Monitoring every single stream to support
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water licensing and compliance is impractical (due to lack of funding), which
means that hydrologists often do not have the ongoing streamflow time series
required for planning and operations (Metcalfe et al., 2005). Alternatively,
hydrological modelling can be employed to estimate the natural streamflow
which is then used to estimate flow characteristics at gauged or ungauged sites.
Estimates of natural streamflow at both gauged and ungauged sites can be
generated either by [i] deterministic rainfall-runoff models, or [ii] making use
of spatial interpolation and hydrological regionalization. If robust, these two
methods may enhance the current capabilities and reduce uncertainties in
quantifying water availability that would contribute to water management in
Alberta. This paper describes the application of two different approaches to
estimate the natural streamflow at both gauged and ungauged sites, one using
the physically based distributed model MIKE SHE/MIKE 11 and the other, a
Pragmatic Method (PM) which makes use of flow duration curves (FDC).
Outputs from spatially-distributed hydrological models that are based on
physical processes and parameters are expected to produce more detailed
and realistic results compared to outputs from lumped models (Graham et
al., 2005); however, these models require the adequate quantification of a
large number of parameters, reliable climate inputs, and are generally a time
consuming, labor intensive approach (Graham et al., 2005). The inclusion of
such models as predictive tools has been identified as part of the long-term
research objectives of Alberta Environment and Sustainable Resource
Development (AESRD).
As an alternative, applied research suggests that in many parts of the
developing world a spatial interpolation and regionalization methods using
FDC would offer an initial, parsimonious approach for simulating natural
flow regimes at gauged and ungauged sites (Metcalfe et al., 2005). This
approach may not be adequate for predicting flows in
intermittent/ephemeral streams; therefore, the Province of Alberta is
pursuing a pilot project to test the applicability of a fully distributed
hydrological model capable of coupling surface-ground water interaction to
enhance the capability of predicting flows in intermittent/ephemeral
streams. This paper describes the development and application of two
different approaches for predicting natural flows in gauged and ungauged
streams representing the two ends of the hydrological modelling
spectrum – from a simple pragmatic hydrological model to a comprehensive
spatially-distributed, physically based hydrological model.
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AESRD has initiated two pilot projects to test these two distinct
methodologies to estimate natural flows at both gauged and ungauged
watersheds in the South Saskatchewan River Basin (SSRB). One project
involves the application of PM in the SSRB within Alberta (includes Red
Deer River, Bow River, Oldman River, and South Saskatchewan River
basins) while the second project involves the application of the MIKE
SHE/MIKE 11 model in the Elbow River watershed which is located in the
Bow River Basin (Figure 16.1). Complexity and computational burden
increase with a physically based fully distributed hydrological model like
MIKE SHE, which may be best suited for operational needs that warrant
relatively more certainty in model outputs. Conversely, conceptual and
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Figure 16.1 Map of the South Saskatchewan River Basin.



lumped modelling like the PM is rather simple, requires less computational
time, and is best suited for basin level water management planning. It is
expected that at the end of these pilot projects the province would be able to
implement these models in the entire Province of Alberta to enhance water
management (planning and operation) by enabling near real time
computation of natural flows in gauged and ungauged watersheds.

MIKE SHE hydrological model

MIKE SHE, a physically based distributed hydrological model was used to
simulate hydrological processes in the Elbow River watershed (Figure 16.1 and
16.2). It was dynamically linked to the one-dimensional hydrodynamic surface
water model MIKE 11 for a complete representation of the river network within
the watershed. The configuration includes comprehensive surface water and
groundwater components. A detailed description of the relevant data,
parameters, and methods used for the model setup can be found in Wijesekara
et al. (2012, 2013). The sensitivity of the model to surface water and geological
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Figure 16.2 Map of the Elbow River watershed and MIKE SHE model domain (from Wijesekara
and Marceau, 2012).



parameters required for the 3D groundwater module was evaluated by
changing the values of each parameter at a time and running simulations. With
each run, the goodness of fit of the model was evaluated by comparing
observed and simulated total snow storage and streamflow data. Based on the
results obtained from this analysis, a rigorous calibration and validation
procedure was applied using the split-sample, multi-criteria, and multi-point
procedure recommended by Refsgaard (1997). 

Pragmatic Method based hydrological model 

The PM is a simple yet robust approach (Metcalfe et al., 2005) based on
spatial interpolation and hydrological regionalization methods to generate
natural flows in ungauged watersheds. The hydrological regionalization
project was completed in 2006 (Golder Associates, 2006) and is not part of
this paper. One of the outcomes of the hydrological regionalization project
was a set of hydrological region boundaries within the province of Alberta
which have been used in the PM spatial interpolation analysis (Figure 16.3).
Prior to any interpolation, data collected from the hydrometric stations were
analyzed to determine the period of record and whether or not the data are
collected on an annual or seasonal basis (typically April to October). During
this step, the data were also analyzed to ensure that they are truly natural flow
stations (McGee et al., 2012). For any interpolation run the associated
drainage area polygon of each selected hydrometric station was used to
establish the centroid of the watershed. This was done because basin specific
yield values are better represented spatially at the centroid of each watershed
than at the gauge location (Krug et al., 1990). A variety of analytical tools
used in conjunction with the project were created to facilitate the
development of a PM hydrological model for the entire SSRB watershed.
Continuous interpolated surfaces of annual yield and dimensionless flow
exceedance percentage points for each hydrological region in Alberta were
created (Figure 16.3). Although the tool is designed to calculate any percent
exceedance point (user defined), the defaults are 31 percent exceedance
surfaces (0.01, 0.05, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90, 92.5, 95, 97, 99.45, 99.9, 99.95 and 99.99). 
The combination of all interpolated surfaces generates a dimensionless
percent exceedance curve for any drainage area within the SSRB. At the same
time, the annual yield can also be computed for the drainage area in question.
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Combining the dimensionless percent exceedance points and annual yield
results in an FDC for the selected watershed. With any point and click
watershed delineation tool (in this project ArcHydro), the estimation of the
FDC for ungauged watersheds is relatively easy. The applied methodology
was adopted as outlined by Metcalfe et al. (2005), where known key
hydrometric stations and/or regional FDCs are used to compute the near real
time flows at ungauged watersheds.
The PM is simple in theory where known flows from key hydrometric
stations are transferred to an ungauged watershed using FDCs (Figure 16.4).
At key hydrometric stations, two things are required: (i) availability of real
time flow data, and (ii) a derived FDC using historical data. When flows are
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Figure 16.3 Hydrological regions of Alberta.



required to transfer from a key station to an ungauged station, a percent
exceedance is obtained from the key hydrometric FDC. For the ungauged
watershed, an FDC is derived from the aforementioned continuous
interpolated surfaces. The key assumption is that, at the time of transfer the
ungauged watershed is flowing at the same percent exceedance as the key
hydrometric station, and therefore it is possible to compute near real time
natural flows at ungauged watersheds.

16.4 RESULTS AND DISCUSSION

MIKE SHE Hydrological Modelling

This section describes the performance of the MIKE SHE/MIKE 11 model.
The total water balance error during all model runs was less than 1% and
considered an adequate model performance. The differences in accumulated
flow volumes between observed and simulated flows at Bragg Creek
(05BJ004) hydrometric station during the simulation period of 1982-91 are
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Figure 16.4 Estimation of near real time natural flow using the Pragmatic Method.



listed in Table 16.1. A seven percent difference was found at Bragg Creek
flow gauge station between the simulated and observed total accumulated
volume for the period of 1982 to 1991. The difference in accumulated flows
during the open water (high flow) periods and the winter (low flow) periods
were found to be six percent and ten percent, respectively. The comparison
of simulated and observed hydrographs (Figure 16.5) shows that the trends
of flow changes are reasonably simulated for the calibration period from
1982 to 1991. The calculated Nash-Sutcliffe Efficiency (NSE) values were
between 0.52-0.94 and the correlation coefficients were between 0.52-0.97
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Figure 16.5 Comparison of simulated and observed flow data at various hydrometric stations
in the Elbow River watershed.

Accumulated

Simulated volume

(Mm )3

Observed volume

(Mm )3

Difference (%)

Total volume 2359 2200 7

High flow volume 1586 1496 6

Low flow volume 773 705 10

Table 16.1 Accumulative flow volume at Bragg Creek (05BJ004) hydrometric station Creek
during the simulation period of 1982-91.



based on monthly flow data at the four hydrometric gauging stations located
on the main stem of the Elbow River (Figure 16.2). According to model
evaluation guidelines mentioned by Moriasi et al. (2007), an NSE value
above 0.5 for a monthly time step in hydrological modelling is considered
satisfactory. Therefore, the performance of the MIKE SHE model as
configured for the Elbow River watershed was considered sufficient to
reasonably estimate the required natural streamflow series in the watershed.

Pragmatic Method based Hydrological Model

The developed PM based hydrological model for the Alberta portion of the
SSRB is currently being calibrated. Even though the methodology is robust
and has been applied in various parts of the world (Metcalfe et al., 2005),
comprehensive calibration and testing are required. The initial results are
promising and will be published in the near future. Moreover, further testing
is being conducted to identify any limitations with respect to drainage size
and spatial representation of key hydrometric stations. This methodology
depends on the availability of near real time flow data at key hydrometric
stations which makes it difficult to apply in watersheds where there are no
hydrometric measurements.
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TOWARDS IMPROVED HYDROLOGIC MODEL
PREDICTIONS IN UNGAUGED SNOW-DOMINATED

WATERSHEDS UTILIZING A MULTI-CRITERIA APPROACH
AND SNODAS ESTIMATES OF SWE
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1Geography Department, University of Nevada, Reno, Nevada 89557

17.1 ABSTRACT

In the mountainous regions in the western United States, much of the annual
streamflow runoff originates as meltwater from snow. Hydrologic models used
for water supply forecasting in these regions use a wide range of algorithms to
simulate the snow water equivalent (SWE) throughout the accumulation and
depletion processes of the snowpack; obtaining accurate estimates of the spatial
and temporal distribution of SWE, however, is a challenge due to the limited
number of point observations of SWE. Thus, the calibration of these models
generally focuses on fitting simulated streamflow to observed streamflow data.
In this study, SWE estimates obtained from the Snow Data Assimilation
System (SNODAS) product are investigated as a surrogate for observation data
to perform a multi-objective, multi-behaviour calibration of a hydrologic
model. When the hydrologic model is calibrated using the SNODAS SWE
estimates (and the streamflow observations are not used in the calibration
process) the resulting simulation of streamflow compares reasonably well with
the observed streamflow values. This suggests SNODAS estimates of SWE
may contain information that, in the absence of any streamflow observations,
may be very useful for improving model predictions in ungauged basins.

17.2 RÉSUMÉ

Dans les régions montagneuses de l’ouest des États-Unis, une bonne partie de
l’écoulement annuel provient de l’eau de fonte de la neige. Les modèles
hydrologiques servant à la prévision des réserves d’eau dans ces régions
reposent sur un vaste éventail d’algorithmes pour simuler l’équivalent en eau
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de la neige (EEN) tout au long des processus d’accumulation et de diminution
du manteau neigeux; cependant, l’obtention d’estimations exactes de la
distribution spatiale et temporelle de l’EEN constitue un défi vu le nombre
limité de points d’observation de l’EEN. Par conséquent, l’étalonnage de ces
modèles met en général l’accent sur l’ajustement de l’écoulement simulé en
fonction des données observées sur le débit. Dans la présente étude, les
estimations de l’EEN obtenues à partir du produit du système de données
SNODAS (SNOw Data Assimilation System) sont étudiées en tant que
substituts des données d’observation pour l’exécution d’une calibration multi-
objectifs et multi-comportements d’un modèle hydrologique. Lorsque le
modèle hydrologique est étalonné à l’aide des estimations de l’EEN basées sur
les données de SNODAS (et que les observations entourant le débit ne sont
pas utilisées dans le processus d’étalonnage), la simulation de l’écoulement
qui en résulte se compare raisonnablement bien aux valeurs d’écoulement
observées. Cela porte à croire que les estimations de l’EEN tirées des données
SNODAS peuvent contenir de l’information qui, en l’absence de toute
observation entourant les débits, peut s’avérer très utile pour l’amélioration
des prédictions de modèle dans les bassins non jaugés.

17.3 INTRODUCTION 

There have been a wide range of different modelling approaches for ungauged
watersheds planned, developed, and tested over the last decade through the
International Association of Hydrologic Sciences (IAHS) effort focused on
Predictions in Ungauged Basins (PUB) (Sivapalan et al., 2003). Some of the
more common approaches include regionalization methods based on physical
and/or hydrological similarities between an ungauged study area and a gauged
basin or geographical region, nearest neighbour methods which infer
parameter values based on gauged watershed models in close geographical
proximity to the study area (Vandewiele and Elias, 1995; Parajka et al., 2007),
and other methods with regression based algorithms like the simple linear
parametric (Seibert, 1999) and the more complex multivariate semi-
parametric (Li et al., 2010) algorithms which establish relationships between
model parameters and variables such as watershed characteristics or climate. 
More traditional model calibration approaches involve the selection of
values for parameters so that the model matches the observed behaviour of
the watershed system as closely as possible. The observed behaviour is most
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often the streamflow, which is, by definition, not available in PUB
applications. In the absence of observed streamflow, other observations or
estimates of important watershed behaviours related to the water and
energy balance may be available to improve the performance of the model.
Hay et al. (2006) used a multistep calibration procedure with readily
available estimates of average monthly solar radiation and Potential
Evapotranspiration (PET) to improve the simulation of streamflow
observations. While this procedure is a promising advance in hydrologic
model calibration, two of the four calibration steps require the availability of
streamflow measurements, thus a limitation for applying the procedure to
ungauged basins that lack observed data. 
In this chapter, a hydrologic model is applied to a snow dominated
mountainous watershed to simulate daily streamflow values at the outlet.
While daily observations of streamflow are available, they are not used to
estimate model parameter values (i.e. a typical PUB situation) but are used
to evaluate model performance. The method developed by Hay et al. (2006)
is used to investigate the value of an operational daily SWE product to
estimate snow related model parameters and improve the simulation of
streamflow. The SWE product is not a direct observation; rather, it is a
surrogate for spatial and temporal SWE observations throughout the study
watershed.

17.4 METHODS

Study Area

This study was conducted on the West Walker River watershed as defined
by the area contributing to the United States Geological Survey (USGS)
surface water station (USGS gage #10296500) located near Coleville, CA
(Figure 17.1). The watershed is approximately 630 km2 and the elevation
ranges from 1,700 m a.s.l. to 3,500 m a.s.l.. The average precipitation varies
with elevation from 535 mm to 1,550 mm and occurs primarily in the winter
as snow. There are four Natural Resource Conservation Service (NRCS)
snow-telemetry (SNOTEL) sites located in the headwaters of the Walker
River basin (Figure 17.1). 
SNOw Data Assimilation System (SNODAS) (Carroll et al., 2001) is a
modelling and data ingestion product of the U.S. National Oceanic and
Atmospheric Administration (NOAA) National Operational Hydrologic
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Remote Sensing Center (NOHRSC) that provides “best possible estimates”
of hydrologic variables related to snowcover for the continental United
States in high spatial (1 x 1 km) and temporal (daily) resolution (Barrett,
2003). The main component of the system is a spatially distributed, multi-
layered snow mass and energy balance model that uses input such as

234

Putting Prediction in Ungauged Basins into Practice Boyle et al

Figure 17.1 Location of West Walker River study area.



temperature, precipitation, and wind analyses from NOAA and National
Centers for Environmental Prediction (NCEP) operational Rapid Update
Cycle 2 (RUC2) numerical weather prediction model. Differences between
model estimates and ground measurements as well as remotely sensed data
of snow covered area, snow depth, and snow water equivalent are compared
on a daily basis, and, if necessary, used to rerun the model and nudge
estimated variables to match observed data more closely. The SNODAS
product is updated daily and can be downloaded cost-free from the National
Snow and Ice Data Center, for the period since 1 October, 2003.

Hydrologic Model

The Precipitation Runoff Modeling System (PRMS) is a hydrologic model
that uses both empirical relationships and physical relationships to represent
the water and energy balances within a watershed (Leavesley et al., 1983).
PRMS is widely used in mountainous, snow-dominated watersheds, to
simulate the streamflow response due to changes in precipitation,
temperature, and snowmelt. 
In this study, the PRMS model was applied at a daily time step over the
period 1 October, 2003 through 30 September, 2009 at a hydrologic response
unit (HRU) and SNODAS grid resolution of 1 km2 (Figure 17.1). A time
series of daily precipitation and minimum and maximum air temperature
were estimated for the centroid of each HRU using the observations at each
SNOTEL site and a relationship based on the location of each SNOTEL site
and each HRU derived from an analysis of long-term average monthly values
of precipitation, minimum temperature, and maximum temperature from the
Parameter-elevation Regression on Independent Slopes Model (PRISM)
(Daly et al., 1994). Initial estimates of all model parameters were set to
default values except those that could be estimated from GIS information
(e.g., topography, soil and vegetation type, etc.); the resulting parameter set
is referred to from here on as the default parameters (Table 17.1).

Parameter Estimation

The PRMS model was calibrated using a three-step automatic calibration
approach based on the approach presented by Hay et al. (2006). Step one
involves using the Shuffled Complex Evolution-University of Arizona
(SCE-UA) genetic optimization algorithm developed by Duan et al. (1993)
to locate optimal values of the monthly solar radiation parameters (dd_intcp
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and tmax_index) while leaving the remaining model parameters at their
default values. In this step, the monthly values of each parameter were
adjusted by the SCE-UA algorithm until the error between the model
estimates of mean monthly solar radiation and those from long-term average
solar radiation resource maps (http://rredc.nrel.gov/solar/old_data/nsrdb/
1961-1990/redbook/) was minimized based on the log of the absolute
difference as recommended by Hay et al. (2006):

(1)

where OBJsolrad is the objective function, m is the month, and EST and SIM
are the basin average estimated and PRMS simulated values of mean
monthly solar radiation, respectively.

OBJ log EST log SIMsolrad m m= | ( ) – ( )|�
12

m=1
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Source

Parameter Description Method1,2 GIS

derived

mix_rain Monthly factor to adjust rain proportion in a rain/snow event X(3)

cecn_coef Monthly convection energy coefficient X(3)

covden_sum HRU vegetation cover density (summer) X

covden_win HRU vegetation cover density (winter) X

cov_type HRU vegetation type (bare, grass, scrub, and tree) X

dday_intcp Monthly intercept temperature degree – day relationship X(1)

emis_noppt Emissivity of air on days without precipitation X(3)

freeh2o_cap Free water holding capacity of snowpack X(3)

hru_area HRU area X

hru_aspect HRU aspect X

hru_elev HRU elevation X

hru_lat HRU latitude X

hru_slope HRU slope X

jh_coef Monthly coefficient used in Jensen – Haise PET computations X(2)

jh_coef_hru HRU coefficient used in Jensen – Haise PET computations X

potet_subllim Proportion of PET that is sublimated from snow surface X(3)

rad_trncf Transmission coef. for sw radiation through winter canopy X

snarea_thresh Maximum SWE below which SCA depletion curve is applied X

snow_intcp HRU snow interception capacity for the major vegetation type X

soil_type HRU soil type (clay, loam, sand) X

srain_intcp HRU summer rain interception capacity for the major veg. type X

tmax_adj HRU max temp. adjust. based on slope and aspect X

tmax_index Monthly index temp. used to determine precip. adjust. to solar rad. X(1)

tmax_allrain Monthly max. temp. above which all precip. is simulated as rain X(3)

tmax_allsnow Max. temp. below which all precip. is simulated as snow X(3)

tmin_adj HRU min. temp. adjust. based on slope and aspect X

wrain_intcp HRU winter rain interception capacity for the major veg. type X

1All parameters not included in Table 17.1 were set to PRMS default values.

2Parameters identified with X() were initially set to PRMS default values. The number in parentheses

corresponds to the calibration step in which the parameter was optimized.

Table 17.1 PRMS parameters adjusted in steps 1-3.



In step two the monthly solar radiation parameters found in step one were
set to the optimized values from step one and the remaining model
parameters were set to their default values except one related to the mean
monthly PET (jh_coef). In this step, the monthly values of the parameter
were adjusted by the SCE-UA algorithm until the error between the model
estimates of mean monthly PET and those estimated from Farnsworth et al.
(1982) was minimized based on the log of the absolute difference as
recommended by Hay et al. (2006):

(2)

Where OBJpet is the objective function, m is the month, and EST and SIM
are the basin average estimated and PRMS simulated values of mean
monthly PET.
Step three involves setting the solar radiation and PET parameters to the
values found in steps one and two; the remaining parameters are set at their
default values except for parameters related to the snow accumulation and
melt processes (adjmix_rain, cecn_coef, emis_noppt, freeh2o_cap,
potet_sublim, tmax_allrain, and tmax_allsnow). In this step, the values of
these parameters were adjusted by the SCE-UA algorithm until the error
between the model estimates of daily SWE and those estimated from the
SNODAS product was minimized based on the following objective measure:

OBJSWE = 0.3·OBJoverall + 0.1·OBJnosnow + 0.3·OBJaccum + 0.3·OBJdepl (3)

Where OBJoverall, OBJnosnow, OBJaccum, and OBJdepl are the objective
measures of the entire time series, the periods of no snow, snow
accumulation, and snow depletion, respectively. The no snow period is
weighted with 0.1 while the other behaviours received weights of 0.3, to
give emphasis to behaviours in which snow is physically present according
to the SNODAS product. Each of these four objective functions is calculated
using the normalized root-mean-squared error (NRMSE):

(4)OBJ =
�
�

ndays

ndays

n=1

n=1

( )SNOD – SIMn n
2

( )SNOD – MNn
2

OBJ log EST log SIMpet m m= | ( ) – ( )|�
12

m=1
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Where ndays is the number of days in the time series that fall in the
individual SWE period, n is the number of days in the period, SNOD and
SIM are the SNODAS and PRMS simulated time series values of the
respective period, and MN is the mean daily SWE value associated with an
individual period. This step is different from the procedure outlined in Hay
et al. (2006) since our approach takes advantage of the SNODAS estimates
of SWE and assumes no streamflow observations exist to perform their steps
three and four.

17.5 RESULTS

The results for steps one and two are shown in Figure 17.2 and Table 17.2.
The mean monthly solar radiation and mean monthly PET estimates resulting
from the default parameter set tend to slightly underestimate the values in
October through April and overestimate June through September while those
resulting from the calibration procedure are a near perfect fit for all months. 
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Figure 17.2 Calibration results for step 1 (a) and step 2 (b). Observations are indicated by
black dots, simulated results using default parameters by grey lines, and
calibrated results by black lines.



The results for step three are shown in Figure 17.3 and Tables 3 and 4.
A visual inspection of Figure 17.3a reveals the improvement in the model’s
ability to fit the SNODAS SWE estimates with the parameters obtained after
step three of the calibration procedure. The objective measures shown in
Table 17.3 also provide a means to assess the improvement in the model’s
ability to fit all defined behaviours of the SWE (i.e. overall, no snow,
accumulation, and depletion).
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Step 1

(absLogDiff )solrad

PRMS Step 1

(absLogDiff )PET

Default 0.50 1.08

Calibrated 0.03 0.03

Table 17.2 Objective measures obtained for the first and second calibration step.

Figure 17.3 Results from step 3 for SWE (a) and streamflow (c); results for streamflow using
default values are shown (b) for comparison. Observations are indicated by black
dots, simulated results using default parameters by grey dashed lines, and
calibrated results by black lines.



Visual inspection of Figures 3b and 3c reveals the improvement of the
model’s performance in terms of observed streamflow. In general, the results
appear to be much closer to the observed streamflow in terms of dynamics
and bias; however, there are still two short duration, high flow rain on snow
events that the calibrated model is significantly overestimating. The poor
performance for these two events is most likely related to errors in
temperature observations and the process of partitioning precipitation into
rain and snow. The values of NRMSE and percent bias presented in Table
17.4 were computed for the overall time series of simulated and observed
streamflow and individual streamflow behaviours defined by Boyle et al.
(2000) as rising limb, falling limb, and baseflow. Both measures show a
quantifiable improvement for all behaviours for the calibrated model.

17.6 DISCUSSION AND CONCLUSIONS

While the results presented in this paper are for only one watershed using
one hydrologic model, they demonstrate at a proof of concept level the
potential value in incorporating estimates of SWE from the operational
SNODAS product into the calibration process. There was an improvement
in the model’s ability to simulate observed streamflow compared to the
results obtained using default parameter values. This is particularly relevant
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Objective Measures1 Default Step 3

Weighted NRMSESWE 0.75 0.26

NRMSEoverall 0.7 0.25

%BIASoverall -50 -6

NRMSEnosnow 0.47 0.18

%BIASacn -42 20

NRMSEaccumulation 0.72 0.19

%BIASaccumulation -41 3

NRMSEdepletion 0.92 0.38

%BIASdepletion -59 -18

1
SWEThe objective measure used for calibration in step 3 was the weighted NRMSE

The remaining objective measures are shown in the table to provide a quantitative  measure of

closeness for each of the defined behaviours of the watershed in terms of SWE.

.

Table 17.3 Objective measures for SWE corresponding to third calibration step.



to PUB applications where there are no observations of streamflow. A
general evaluation of the value of this approach, however, would require a
much more comprehensive evaluation over a large number of watersheds in
different regions (e.g., Sierra Nevada, Rocky Mountains, Wasatch, etc.). 
It would also be useful to better understand the relationship between the
SWE estimates and the observed streamflow and how these relationships
change for different regions. It is very important to remember that the
SNODAS estimates of SWE are not direct observations of SWE, rather they
are a product based on a modelling process that is evaluated and influenced
by point observations of meteorological and snowpack information where
available. The watershed selected in this study contained four NRCS
SNOTEL stations that are used by the SNODAS product. A similar study is
currently being performed by our team in a mountainous study area in
central Nevada with no point observations of meteorological and snowpack
information to expand our understanding of the value of SNODAS in PUB
applications. Clearly, this specific methodology will not work in areas
outside the U.S. where SNODAS SWE products are generally unavailable
(though southern Canada also has SNODAS coverage). The general
approach of using independently derived estimates of important hydrologic
variables to estimate relevant model parameters in the calibration process
could be useful, and will be a focus of future work.
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NRMSEoverall 0.89 0.46

%BIASoverall 8.28 7.55

NRMSEbaseflow 8.24 3.17

%BIASbaseflow 99 24

NRMSErisingLimb 1.35 0.64

%BIASrisingLimb 84 7

NRMSEfallingLimb 0.79 0.47

%BIASfallingLimb -48 6

Objective Measures1 Default PUB Calibration

1
SWEThe objective measure used for calibration in step 3 was the weighted NRMSE

The objective measures shown in this table were calculated to provide a quantitative measure

of closeness for each of the defined behaviours of the watershed in terms of streamflow.

.

Table 17.4 Objective measures of streamflow corresponding to third calibration step.
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18.1 ABSTRACT

A novel reconstruction method that estimates the spatial distribution of snow
water equivalent (SWE) in mountainous areas is presented. This model is
based on remote sensing imagery and energy balance calculations only and
allows us to compute the SWE distribution at sub-pixel resolution for any
day during the melt season. No precipitation input is needed to drive this
model; hence it could be a valuable addition to the existing tool boxes of
hydrologic modelling researchers and practitioners. 

18.2 RÉSUMÉ

Une nouvelle méthode de reconstruction permettant d’estimer la distribution
spatiale de l’équivalent en eau de la neige (EEN) dans les régions
montagneuses est présentée. Ce modèle est basé sur l’imagerie de
télédétection et sur des calculs du bilan énergétique seulement et il nous
permet de calculer la distribution EEN à une résolution sous-pixel pour
n’importe quel jour pendant la saison de la fonte. Aucune donnée d’entrée
sur les précipitations n’est nécessaire pour exécuter ce modèle. Par
conséquent, il pourrait s’agir d’un ajout précieux à la boîte à outils existante
des professionnels en exercice et des chercheurs du domaine de la
modélisation hydrologique. 
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18.3 INTRODUCTION

Spatial variability in snow water equivalent (SWE) plays an important role in
the prediction of a basin’s streamflow at both daily and seasonal times scales,
because it affects the timing and magnitude of daily and annual melt; areas of
heterogeneous SWE will cause patchy snow coverage during the melt season.
This heterogeneity reduces the surface-to-volume ratio of the remaining snow,
compared to homogeneous snowcover, because the same amount of snow has
a smaller surface. Consequently, the snow will persist longer into the melt
season and sustain stream discharge into the summer months. In addition to
the effect on streamflow, SWE heterogeneity also affects soil moisture and
vegetation; areas of high accumulation produce quasi-riparian zones of
increased soil moisture that remain wet longer into the dry season.

Spatial patterns of snow heterogeneity are expected to be similar between
years, since they are related to interannually invariant parameters like
topography, vegetation, and prevailing wind direction. Capturing these
patterns, even by a retrospective method, could improve predictive modelling.
It is also important to evaluate just how similar these spatial patterns are.

Remote sensing can give us a good measurement of the areal extent of
snowcover, but quantifying the depth of snow from remote sensing is very
difficult. Snowmelt and energy balance models can estimate the daily melt,
but capturing the progression of spatial heterogeneity of SWE throughout
the water year exceeds most models’ capabilities. Combining the strengths
of both methods will enable us to predict snowmelt runoff most effectively.

18.4 METHOD

SWE reconstruction from snowcover depletion was first proposed by
Martinec and Rango (1981) and further developed by others (Cline et al.,
1998a, 1998b; Molotch et al., 2004; Molotch and Bales, 2005). Martinec and
Rango (1981) reconstructed basin SWE backward in time using estimates of
snow covered area from Landsat and aerial photography combined with daily
melt computed by a temperature-index model. The basic idea was both
simple and clever: starting at peak snow accumulation, the potential melt is
summed up daily for each pixel until the remote sensing imagery shows that
this pixel is snow-free. The sum yields the total amount of SWE per pixel.
The novelty of the model presented here is that it does not just sum up the
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pixel SWE to a grand total, but instead determines the distribution of SWE
within each pixel in order to study the degree of heterogeneity.

The temporal resolution of MODIS allows tracking of daily changes in
fractional snowcover area (fSCA). Using this record, the reconstruction model
follows the pixel fractions and the time when each of them melts out. From
this the snowpack is reconstructed day by day as shown in Figure 18.1. 

The potential melt estimates snow in the vertical dimension and fSCA masks
out the fraction of the pixel to which this snow is added. The product of
these will give us a SWE volume for one day. This calculation is done each
day until we reach the end of the melt season; the final product yields the
distribution of SWE for one day within one pixel and can be plotted as a
histogram of SWE values. Since visual inspection of histograms is
impractical for the study of an entire watershed, statistical measures are used
to represent the distributions instead. The median is chosen to represent
pixel average and the percentile range from 25th to 75th percentile, referred
to as C50, quantifies the spread. C50 scales with the pixel’s average SWE
value, because precipitation increases towards higher elevations. To
eliminate this dependence, C50 can be normalized by the median to
represent SWE heterogeneity by the coefficient of variation of the pixels’
SWE distribution. For direct quantitative comparison with the heterogeneity
from melt, however, C50 is better suited.

Fractional snow covered area is derived from spectral-mixture analysis of
daily MODIS data at 500 m resolution (Painter et al., 2009). The daily fSCA
estimates are modelled to interpolate and smooth across data gaps and
errors, such that the final product is continuous in time and space (Dozier
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Figure 18.1 Conceptual model to estimate heterogeneous snow water equivalent (SWE) in a
MODIS grid cell.



et al., 2008). The potential daily melt is modelled with the snowmelt model
Isnobal (Marks et al., 1999; Garen and Marks, 2005) at 30 m resolution. The
model assumes a two-layer snowpack and computes the full mass and
energy balance at hourly steps. To simulate a full water year, input of
distributed radiation and meteorological data, as well as precipitation maps
for each storm event are required. Alternatively the melt season can be
modelled by itself, without the need for any precipitation input. In that case
the snowpack is simply initialized with the appropriate amount of SWE, and
subsequent melt can be computed from radiation, temperature, and humidity
alone. For the reconstruction model, only the melt output of Isnobal is
needed, and it is aggregated at the MODIS resolution to combine it with the
previously described fSCA data.

Heterogeneity from melt is derived from modelled 30 m Isnobal melt. It is
computed as the standard deviation of the cumulative melt within the larger
region of the 500 m MODIS pixels. Since melt is a surface effect without
strong dependence on the depth of the snowpack, normalization by average
SWE values is not appropriate. 

18.5 RESULTS 

SWE reconstruction

Heterogeneity from accumulation:

• derived from reconstructed SWE at peak accumulation ( the point in
time when snow melt has not begun)

• inter-annually consistent
• highest above the timberline (effects of redistribution and sublimation)
• used C50 here (not coefficient of variation) to allow quantitative

comparison with heterogeneity from melt in Figure 18.2 below

Vegetation cover plays an important role, because it provides shelter from
wind, the main driver of sublimation and redistribution. Histograms of
individual pixels around the transition zone from forest to open illustrate the
resulting SWE distributions (Figure 18.3). The three example pixels are
located in close spatial proximity at elevations between 2600 m and 3000 m
(Table 18.1; Figure 18.3). Pixel 132 is in the forest, pixel 136 at the
timberline and pixel 138 in the open. Forested and open pixels have similar
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average SWE values, but their distributions are distinctly different, leading
to an order of magnitude difference in coefficient of variation. The pixel
with dense canopy is an example of a homogeneous snowpack, while the
pixel in the open exhibits a heterogeneous snowpack. 

Pixel 136 at the transition between forest and open is closer to the open
pixel, both in terms of horizontal and vertical distance, but the shape of its
SWE distribution resembles that of the forested pixel. Pixel average SWE
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Figure 18.2 Basin location (within 500 m DEM) and SWE histograms of three example pixels,
with different distributions, pixel statistics in Table 18.1.

pixel ID elev(m) fveg Med(mm) C50(mm) Cov

132 2614 0.8 888 89 0.10

136 2800 0.4 1341 265 0.20

138 2957 0 949 903 0.95

Table 18.1 Statistics of SWE distribution from the three example pixels in Figure 18.3.



values tend to increase toward the upper elevations since precipitation is
higher there; however, this trend halts at the timberline, probably due to
sublimation and scouring effects, which deplete the snowpack during the
accumulation period. As a result pixel 138 has less SWE than pixel 136.

The spatial patterns of SWE heterogeneity from melt are similar in 2007-
2009. During 2006 the relative distribution is distinctly different.
Heterogeneity values are lower and more uniform throughout the basin.
April 2006 had several storms, hence new snow accumulated and very little
melted. Since April is the month with the highest spatial variability in melt,
the 2006 snowpack does not pick up much of that and remains more
homogeneous for the rest of the season.

The consistency of the spatial patterns in the remaining years suggests spatial
correlation with other invariant basin characteristics. A comparison of a
typical pattern of SWE heterogeneity with a map of fractional vegetation
cover reveals a number of spatial similarities (Figure 18.4).
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Figure 18.3 Heterogeneity in SWE from the accumulation period of water year 2006-2009
quantified as C50 values (mm) of reconstructed SWE at peak accumulation.



There are three zones of high heterogeneity. The first is a thin line of high
heterogeneity along the southeastern edge of the basin, which coincides with
the park road (depicted with black line in Figure 18.5). The road runs in a
forest aisle representing an abrupt change in the vegetation cover, which
causes a high change in melt and thus high heterogeneity. Another zone of
high heterogeneity is outlined with dotted blue ovals across the northwest
corner of the basin. In some years the heterogeneity is higher in the north, in
others in the south. This zone lies along the timberline so again there is a
relatively rapid change in vegetation cover. The southern end of this oval
shows particularly high values of heterogeneity. It coincides with a narrow
valley where south-facing and north-facing slopes meet, so topography
accentuates the SWE heterogeneity. The third zone of high heterogeneity
approximately forms a cross at mid-elevations. The 500 m map of fractional
canopy cover derived from a binary map at 30 m resolution indicates values
of around 0.5 for these pixels. By the nature of this derivation, 0.5 does not
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Figure 18.4 Heterogeneity in SWE due to melt towards the end of the melt seasons 2006-
2009. Heterogeneity is computed at standard deviation of cumulative 30 m melt
within 500 m MODIS pixels, (mm).
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Figure 18.5 left: Typical pattern of heterogeneity in SWE (mm) due to melt (June 1st, 2007);
right: Vegetation cover fraction derived from binary vegetation cover based on
NLCD at 30 m resolution. Black oval: high SWE heterogeneity around timberline,
dashed line: National Park Road in a forest aisle, dotted circles: zones of low
heterogeneity in pixels with vegetation cover fraction near 1.

Figure 18.6 Spatial distribution of absolute values of total annual deviation between Melt500 m
and Melt30 m (%). Inset: distribution of the deviation values.



refer to the density of evenly spaced trees, but to the fraction of 30 m pixels
in the 500 m pixel that has trees in it. Thus, as for the previous two zones,
this group of pixels represents a heterogeneity canopy cover. The zones of
low SWE heterogeneity coincide with pixels of homogeneous vegetation
cover. The four zones below the timberline (circled in Figure 18.5) include
almost no open pixels, and the vegetation fraction is near 1.0. Above the
timberline the SWE heterogeneity is also low, but here the homogeneous
lack of vegetation cover is the reason.

Heterogeneity from melt:

• Comparison of the two patterns show high persistence between years,
but heterogeneity from melt depends on timing of onset of melt.

• Location of high values in the two components do not coincide
spatially, but both are correlated with vegetation cover:
Accumulation = above timberline; Melt = transition zone between
forested and open.

• Maximum heterogeneity caused by accumulation is higher than the
one caused by melt.

Limitations

Currently the reconstruction model is still limited in the extent of
heterogeneity that can be captured during the melt season. Potential melt is
simulated at 30 m resolution, but fSCA only provides one scalar per 500 m
MODIS pixel to indicate the snow covered fraction. How much of the pixel
is covered is known, but location within the pixel is not. Consequently,
transferring the full information of the potential melt from Isnobal to the
reconstruction is not possible and the melt is assumed to be uniform within
a MODIS pixel. Figure 18.6 shows that this might be an acceptable
assumption, but that it is not completely true; it shows the deviations of total
annual melt at 30 m resolution from the total annual melt averaged over
500 m resolution. Deviations range from -40% to 60%, but these extreme
values occur only rarely as shown in the inset in Figure 18.6. Most of the
large deviations occur at lower elevations or along the National Park road
where snow is only present for a few days of the year. 80% of the pixels
deviate by less than 12% from the 500 m average. 
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18.6 SUMMARY AND CONCLUSIONS 

A new approach to characterize the snowpack in mountainous basins using
minimal ground-based measurements is proposed. The SWE reconstruction
method presented does not require precipitation input, which makes it a
highly attractive method to improve predictions in ungauged basins. In
addition to pixel total SWE, which was estimated in previous reconstruction
efforts, this model also captures the variability in SWE distribution within
each modelling unit. It combines the daily change in fractional snow
covered area with cumulative daily melt, computes the distribution of SWE,
and summarizes its spread as the range between 25th and 75th percentile of
the distribution, normalized by the median SWE.

This study further demonstrates how to separate and locate the two
contributions to SWE heterogeneity: During accumulation, heterogeneity is
highest in the open areas above the tree line. Once melt sets in, the
heterogeneity increases also at the transition between forested and open areas. 

In winter, snow accumulation is heterogeneous because of wind (Winstral
et al., 2013); however, reconstruction accounts for the results of wind-
redistributed snow at the beginning of the melt season, even though it does
not model the actual distribution processes. Thus it provides an independent
method of examining the spatial distribution of snow, which is useful to
validate models of snow accumulation, either owing to redistribution (Elder
et al., 1991) or to precipitation itself, such as PRISM (Daly et al., 2001;
Davis et al., 2001). It is also useful in evaluating other methods to measure
snow accumulation and its spatial variability, for example passive
microwave. Not only does reconstruction match streamflow better than
other methods (Rittger, 2012), it shows the significant negative bias of
passive microwave measurements (Vander Jagt et al., 2013).

The measurement of heterogeneity can improve the way we model
snowmelt. When the snowcover becomes patchy, uncovered ground will
alter the advective energy exchange with the snowpack. Usually in our
models, we refine the grid size down to the point where we make the cells
individually homogeneous, but this strategy drives consumption of
computational resources. Can we instead develop our distributed hydrologic
models to account for heterogeneity in each cell (Luce and Tarboton, 2004)?
This issue becomes particularly important when we incorporate snow into
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land-surface interactions for climate models, because in addition to the
obvious processes like snowmelt, the distribution of snow affects
biogeochemical fluxes like carbon exchange (Pitman, 2003) and other
elements of the land-surface interaction (Giorgi and Avissar, 1997; Liston,
2004; Swenson and Lawrence, 2012). Snow is therefore a general example
of the importance of spatial patterns in the hydrologic response of
catchments (Grayson et al., 2002). Improvements needed include better
quantitative methods for pattern comparisons and better use of pattern
information in data assimilation and modelling.

Finally, snow heterogeneity is important for a wide range of animal behaviour
and vegetation patterns in the mountain environment; for example, caribou eat
not the most nutritious lichen, but the lichen that are beneath the shallow snow
patches (Johnson et al., 2001). Snow heterogeneity also affects the response
of ecosystems to climate change, for example plant growth, arthropod
communities, and carbon cycling. Winter snowcover and depth will add to
spatial patterns in vegetation heterogeneity (Bokhorst et al., 2012).
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19.1 ABSTRACT

On the Canadian Prairies the vulnerability of rural municipalities, their
infrastructure, and economies to flooding has become a concern in recent
years. The usual modelling approaches to assessing flood hazards are
unsuitable for Prairie landscapes because of invalid assumptions and their
focus on river reaches and the adjacent flood plain rather than the entire
landscape. Prairie landscapes, being recently deglaciated, are comprised of
complexes of wetlands which can contribute to flooding and are also
ungauged. The Wetland DEM (Digital Elevation Model) Ponding Model
(WPDM) is a tool that has been introduced to the Land and Infrastructure
Resiliency Assessment (LIRA) project to provide improved flood hazard
information for Prairie landscapes. The application of the WDPM to LiDAR
(Light Detection and Ranging) DEMs has been particularly useful for Prairie
landscapes where filling of wetlands is a dominant factor contributing to
flooding. The accuracy of spatially distributed runoff information has been
verified against ground and aerial photographs, remote sensing imagery, and
most importantly community stakeholder experience. The results for two
recent LIRA case studies are presented which show the value of this simple,
spatially focused approach to assessing flood hazards across wetland
dominated landscapes. Stakeholders have used this spatially distributed
runoff information for assessing community planning and development, and
for considering potential response strategies where flooding has occurred.
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19.2 RÉSUMÉ

Dans les Prairies canadiennes, la vulnérabilité aux inondations des
municipalités rurales, de leur infrastructure et de leurs économies est
devenue un sujet de préoccupation ces dernières années. Les approches de
modélisation habituelles de l’évaluation des risques d’inondation ne sont pas
appropriées pour les paysages des Prairies en raison des hypothèses non
valides qu’elles formulent et de l’accent qu’elles mettent sur les tronçons de
rivière et sur les plaines d’inondation adjacentes plutôt que sur le paysage
dans son ensemble. Les paysages des Prairies, ayant récemment connu une
déglaciation, sont composés de complexes de milieux humides pouvant
contribuer à des inondations et ils sont également non jaugés. Le modèle
altimétrique numérique (MAN) relatif aux zones humides « Wetland Digital
Elevation Model (DEM) Ponding Model (WDPM) » a été intégré au Projet
d’évaluation de la résilience des terres et des infrastructures (LIRA) pour
offrir de meilleures données sur les risques d’inondation pour les paysages
terrestres des Prairies. L’application du modèle WDPM aux MAN du
LIDAR (détection et localisation par la lumière) a été particulièrement utile
pour les paysages des Prairies où le remplissage des milieux humides
constitue un facteur dominant qui contribue aux inondations. L’exactitude
des données d’écoulement spatialement distribuées a été vérifiée à la
lumière des photographies terrestres et aériennes, de l’imagerie de
télédétection et, qui plus est, de l’expérience des intervenants
communautaires. Les résultats de deux récentes études de cas LIRA sont
présentés. Ils témoignent de la valeur de cette approche spatiale simple de
l’évaluation des risques d’inondation dans les paysages dominés par les
terres humides. Les intervenants ont utilisé ces données d’écoulement
spatialement distribuées pour l’évaluation de l’urbanisme et du
développement des collectivités et pour la prise en considération des
éventuelles stratégies d’intervention là où des inondations se sont produites.

19.3 INTRODUCTION

The Land and Infrastructure Resiliency Assessment (LIRA) is a systematic
methodology consisting of a land use inventory and benefit-cost analysis
designed to assist local and regional municipalities, watershed groups, and
other decision makers identify effective adaptation strategies to address the
risks due to extreme runoff events (Agriculture and Agri-Food Canada, 2013).
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A key input for the economic modelling is a geospatial flood hazard
assessment that can help identify urban and rural regions vulnerable to
flooding and their intersection with economic infrastructure and/or areas of
social or environmental importance. In Prairie landscapes these regions often
include hydrological interactions within ungauged basins.
Canadian Prairie hydrology is complicated by the nature of Prairie
landscapes (Winter, 1989; Shook and Pomeroy, 2011b; Shaw et al., 2011).
The Prairie Pothole Region (PPR), which includes the Canadian Prairies, is
marked by numerous wetland depressions capable of receiving and storing
runoff and groundwater discharge, recharging groundwater, or functioning
as flow-through systems (Euliss et al., 1999). Wetlands can interact
hydrologically by connecting and disconnecting, which are complex
processes that are influenced by the internal state of the system (the storage
water levels and the antecedent soil moisture conditions) and by the local
meteorological forcings (Shook and Pomeroy, 2011b; Shaw et al., 2011).
Complexes of wetland depressions may contribute runoff to larger systems
when a series of interconnected depressions drains into a waterway. As a
result, Prairie floods are due both to rising streams and to the fill-and-spill
of interconnected depressions. Therefore the ‘basins’ that require modelling
include those of the interconnected wetland depressions, whose size and
connectivity change dynamically with the changes to the water stored
within them.
Although some Prairie streams are gauged, the complexes of wetlands and
the ephemeral streams which connect them are not, so the hydrological
responses of complexes of Prairie wetlands depend upon the prediction of
ungauged basins. The ability to model the interactions among wetlands is
critical for determining runoff contributing areas, estimating discharge rates
and runoff volumes, and identifying potential flood hazard zones.
Unfortunately, standard hydrologic and hydraulic practices lack
consideration of the wetland-dominated Prairie hydrology. Conventional
hydrological models cannot reproduce the dynamic contributing fractions of
Prairie basins, and hydraulic models are generally only applicable for
connected channelized water flows.
Therefore current methods cannot generate geospatial flood hazard
assessments that consider potential flood zones, for both rural and urban
landscapes, within ungauged Prairie basins. Nevertheless, this type of
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assessment is a key input to LIRA case studies in the Prairie region of Canada
(Agriculture and Agri-Food Canada, 2013). LIRA required a diagnostic tool
to provide estimates of the spatial distributions of runoff and the possible
extents of flood hazards over entire landscapes.

19.4 METHODS

The Wetland DEM Ponding Model (WDPM)

The Wetland DEM Ponding Model (WDPM) was developed at the Centre
for Hydrology of the University of Saskatchewan (Shook and Pomeroy,
2011b; Shook et al., 2013). The original purpose of the program was to
model changes in the contributing area of wetland-dominated Prairie basins,
due to the changes in the states of wetland storage; however, as the WDPM
computes the spatial distribution of ponded runoff on a Prairie landscape, it
has also been applied as a diagnostic tool to identify areas within the
landscape vulnerable to runoff / flooding hazards.
The WDPM models the destination of surface runoff by applying the
algorithm of Shapiro and Westervelt (1992) to a depth of water which is
added to the entire DEM. The depth of water may be chosen arbitrarily;
however, reference water depths have been applied to examine the potential
spatial limits of runoff and flooding boundaries within the entire landscape.
The reference depths applied are generally equivalent to annual extreme 24
hour return-period rainfall totals (e.g., 1:100 yr, 1:200 yr) and to other
extreme rainfall cases that can contribute to flooding on the Prairies. The
Vanguard, SK flood in July 2000, in which 300 mm of rainfall fell in 8 hours
(Hunter et al., 2003), is of great interest in the Prairies, and was used as
reference depth of water in the runoff simulations. Because the model
assumes that all of the applied water runs off, the simulations exaggerate the
extent of actual flooding that would be due to rainfall events; however, the
simulations are still considered to be useful as a qualitative description of the
location of the destination of runoff, as they represent worst-case scenarios.
The WDPM is well suited to routing runoff throughout Prairie landscapes and
basins. Conventional overland flow models are limited to identifying runoff
directions from a DEM cell to the single direction having the steepest slope;
the Shapiro and Westervelt (1992) algorithm allows water to drain in all
downhill directions, simulating the convergence and divergence of fractional
flow, which generates realistic runoff patterns. The algorithm is also useful in
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that the water is moved physically between cells across the entire DEM. The
iterative nature of the algorithm allows the runoff paths to change dynamically
as wetlands fill and connect, but it can be very slow to converge, typically
requiring hundreds of thousands of iterations. Although the WDPM is written
in Fortran 95 for speed, very large DEMs have resulted in model runs lasting
many hours or days. Improved coding and parallel processing have
subsequently reduced computation times by more than order of magnitude.

19.5 DIGITAL ELEVATION MODELS

The WDPM requires a digital elevation model (DEM) formatted as a
gridded 2D ESRI ASCII file as input. In Canada, freely available elevation
data products with moderate spatial resolutions of 30 m or 90 m include
Canadian Digital Elevation Data (CDED), Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), and Shuttle Radar
Topography Mission (SRTM) data surveyed in February 2000.
All surface elevation datasets contain errors and / or artefacts which limit
their potential suitability for derivative analysis. Deep holes and trenches in
the 30 m ASTER data (attributed to the limited contrast in relief), contour
artefacts embedded in the 30 m CDED data, and the coarser spatial
resolution of SRTM V4 (90 m) rendered these data unsuitable for WDPM
simulation purposes. A second source of SRTM data considered was SRTM
V3 which is a global void-filled downscaled (re-interpolated) version of the
SRTM 90 m elevation data having a horizontal resolution of 30 m. The
suitability of SRTM V3 data for any given application will generally depend
on the backscatter noise in the DEM due to topographic and vegetation
characteristics (Bhang and Schwartz, 2008; Hancock et al., 2006).
Remotely sensed LiDAR survey data, although costly, provide the greatest
level of surface elevation detail and accuracy possible for producing a DEM.
This method generates massive point clouds from measured laser pulses
reflected (returned) from any contacted surface objects. A general limitation
of LiDAR is that due to the size and detail, the data can be difficult to work
with, and may require conditioning to enhance the hydrological connectivity
of infrastructure such as culverts.
Two sources of elevation data were considered for the LIRA case studies in
Prairie locations. Not surprisingly, the WDPM simulations based on LiDAR
provided the most accurate and useful information. Simulations based on
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SRTM V3 data were useful in some areas but were not nearly as accurate or
as detailed as the LiDAR simulations. Visual inspections of runoff
simulations based on SRTM V3 suggest that the lower resolution data are
generally more useful in areas characterized by undulating topography
where drainage into wetlands, lakes, and along channels is relatively well
defined, and tall vegetation is sparse.
Less information is generally obtained from areas of relatively low relief,
where drainage is poorly defined and vegetation is dense, obscuring the
underlying topographic variability (Bhang and Schwartz, 2008). Due to the
timing of the SRTM data capture (during the winter in Canada) and to
processing (downscaling), and where the topographic relief is low or
vegetation is dense, the SRTM V3 dataset may not be suitable for WDPM in
some Prairie locations.
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Figure 19.1 Locations of Redberry Lake Planning Region and Yorkton Creek sub-basin in
Saskatchewan, Canada. Shaded relief is based on Canada 3D DEM obtained from
Natural Resources Canada.



For the purpose of this paper, LiDAR survey data with a vertical accuracy
of ±15 cm were available for a portion of the Redberry Lake planning region
located in Saskatchewan. The accumulated water depths generated from
LiDAR based analysis are more likely to be correctly resolved than outputs
generated from SRTM V3 which has a vertical accuracy of 16 m.

19.6 EXAMPLES OF FLOOD HAZARD ASSESSMENT

LIRA has been involved in three case studies within the Prairie region of
Saskatchewan; at Corman Park, SK from 2006-2009 (Agriculture and Agri-
Food Canada, 2013), and in the case studies presented here. The flood
hazard assessment methodology which was initially developed for the
Corman Park study was improved by the introduction of the WDPM. As
described above, for simplicity the soil surface was assumed to be
impervious to infiltration for the runoff simulations, which maximizes the
assessment of the flood hazard. The cases presented are for a coarse DEM
simulation in the Yorkton Creek sub-basin, which is located within the
Assiniboine watershed in eastern Saskatchewan, and a fine DEM simulation
for the Redberry Lake Planning Region, which is located in central
Saskatchewan. The locations of these regions are shown in Figure 19.1.

Assiniboine case study: Yorkton Creek sub-basin

In the Yorkton Creek region, the simulation was performed using SRTM V3
data, as no LiDAR data were available. An example of the runoff simulation
output for Yorkton Creek is shown in Figure 19.2. This simulation used a
reference water depth of 110 mm applied to the DEM. The reference depth
was derived using Environment Canada’s (2012) Gumbel distribution of
annual maximum rainfalls (1:200 year, 24 hour rainfall depth). The spatial
pattern of accumulated runoff is generally realistic, as it coincides with the
large streams and accumulation zones within lakes and larger wetland areas
depicted in the overlaid hydrography in Figure 19.2. Although the
information is derived from coarse DEM data, the runoff simulation can
provide some useful flood hazard information.
Figure 19.2 indicates that the simulated runoff accumulates in two large
depressional features in the city of Yorkton, which are where storm water
retention ponds were built in 2011 in response to the storm water flooding
that occurred in July 2010. The general agreement between simulated runoff
and real flood hazard zones within Yorkton and the surrounding area is
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encouraging. A key limitation of this relatively coarse dataset, is that the
simulation may cause water to accumulate at locations that may not be real
features. Also roads cannot be resolved at the scale of this DEM, so the
influences of roads on drainage patterns cannot be considered directly.
Therefore the simulation outputs must be used with caution, and the

262

Putting Prediction in Ungauged Basins into Practice Armstrong et al

Figure 19.2 Yorkton Creek region. Gray shaded areas indicate accumulated runoff from the
runoff simulation model (WDPM) output based on 110 mm of water added to the
SRTM 30 m DEM. Black outlines are the surface hydrography blue lines and
water bodies from the National Hydrography Network.



personal experiences of stakeholders are crucial to verifying the general
accuracy and usefulness of the information.

Redberry Lake planning region case study

Rural municipalities within the Redberry Lake planning region are currently
engaged in studies for future planning and development. Through
consultations with project proponents and community stakeholders, a region
that included the town of Radisson and village of Borden was identified as
being vulnerable to runoff flooding. This region was considered to be a
logical site for testing the utility of WPDM on a fine scaled LiDAR DEM that
could be verified by the personal experiences of stakeholders. The location of
the study and of the LiDAR survey data are indicated in Figure 19.3.
For comparative purposes, runoff simulation results are presented in
Figure 19.4 for both the SRTM V3 and the LiDAR survey DEM data. The
maps demonstrate the differences in the outputs when 100 mm of water was
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Figure 19.3 Redberry Lake planning region. Extent of SRTM 30 m and 5 m LiDAR data
surveyed in October, 2011.



added to each DEM; approximately the 1:100 year, 24 hour rainfall amount
for this region. The improvement in the diagnostic level for a flood hazard
assessment is demonstrated by the detailed results for the simulations using
the 5 m LiDAR DEM and the SRTM V3 30 m DEM in the Redberry Lake
planning region plotted in Figure 19.4.
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Figure 19.4 Radisson and Borden area. Runoff simulation model (WDPM) output based on
100 mm of water added to the SRTM 30 m (top) and LiDAR 5 m (bottom) DEM
data. Gray shaded areas indicate accumulated runoff. Black outlines are the surface
hydrography blue lines and water bodies from the National Hydrography Network.



In general, the spatial water extent and connectivity of surface water,
produced by the simulations using the detailed LiDAR data, cannot be
matched by those using the SRTM V3 data. The higher-resolution LiDAR
simulation indicates greater potential for water ponding within the landscape,
and for backflooding influenced by roads. Based on a visual inspection of the
outputs, it is asserted that the spatial extent of runoff for the SRTM V3 data
is overestimated in some areas compared to the LiDAR derived spatial
extents, and underestimated in other areas. These simulation maps are
valuable for identifying locations where more detailed hydrologic or
hydraulic analysis may be required to assess areas affected by changes to a
drainage design, or areas of inundation associated with rising water levels.

Verification of WDPM Runoff Simulation Output

In late April 2013, the town of Radisson and the village of Borden declared a
state of emergency due to large depths of spring melt runoff which resulted in
rising flood waters. Aerial photos taken during the flooding are related to
WDPM outputs for verification purposes for both the Borden (Figure 19.5)
and the Radisson (Figure 19.6) regions. For each region, results for the
application of 100 mm (Figure 19.5a and Figure 19.6a) and 300 mm
(Figure 19.5b and Figure 19.6b) of water to the DEMs are presented. Both sets
of simulations are included to demonstrate the differences in the estimated
spatial extents of the outputs, the magnitudes of the hazards depicted, and
whether either scenario is realistic. Overlaying the township fabric onto the
respective flood hazard assessment maps allows users to trace the location of
water movement through the towns and along the roads and evaluate possible
intersections with economically or socially important receptors.
For the village of Borden (shown in Figure 19.5) various portions of the 100
and 300 mm water depth simulation results appear to agree with flooding
observed in photos 5c - 5e (outlined in black); for example, the extent of
flooding outlined in photo 5c flowing into Borden from the west, appears to
be better represented by the results for the 300 mm simulation
(Figure 19.5b). By comparison, the majority of flooding outlined in photo
5d (through and around the village) appears to be better reflected by the 100
mm simulation results (Figure 19.5a); and a smaller portion in the upper
right of the photo, by the 300 mm simulation. Similarly, the area of high
water outlined in photo 5e (east of the village) appears to be better reflected
by the spatial extent of runoff in the 100 mm simulation results.
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For the town of Radisson the general shapes of the flooded areas surrounded
by higher land features can be visually compared with the WDPM output in
Figure 19.6a. The flooding observed in photos 6c - 6f appears to better
capture the results for the 100 mm simulation (Figure 19.6a). The respective
high water outlines (in black) in the photos have been linked to the outputs;
land marks in the photos and runoff output serve as useful references for
navigation purposes. It should be noted that flood waters shown in photo 6c
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Figure 19.5 Example of WDPM output for the Borden area from applying, (a) 100 mm water
depth and (b) 300 mm water depth. Photos (c - e) link the WDPM output to
verified areas of flooding outlined in black. Aerial photos were provided courtesy
of Frank Fox, Saskatchewan Water Security Agency.



were being pumped into the natural wetland area shown in photo 6d which
artificially increased the area being actively flooded in that region.
Based on the available observations, the flood hazard information provided by
the 300 mm simulation generally appears to be unrealistic for the Radisson
area, which illustrates a limitation of the modified LIRA methodology for
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Figure 19.6 Example of WDPM output for the Radisson area from applying, (a) 100 mm and
(b) 300 mm of water. Photos (c - f) link the WDPM output to verified areas of
flooding outlined in black. Aerial photos were provided courtesy of Frank Fox,
Saskatchewan Water Security Agency.



assessing flood hazards in Prairie landscapes. Although the simulations based
on reference values have provided useful information to stakeholders, the
scientific and technical rigor could be enhanced by linking the spatial
simulations to runoff estimates provided by a hydrological model that
considers a full range of Prairie processes. The Cold Regions Hydrological
Modelling (CRHM) platform, which was also developed at the Centre for
Hydrology, has been developed to model the full range of hydrological
processes that are responsible for producing runoff on the Canadian Prairies
(Pomeroy et al., 2007). Work is ongoing on uniting the physical process
simulations of CRHM, with the spatial representation of the WDPM.
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Figure 19.7 Example of potential adaptation option based on a flood hazard assessment and
elevation profiles generated from LiDAR data (courtesy Frank Fox, Saskatchewan
Water Security Agency).



Input for Potential Adaptation Strategies

Stakeholder and community feedback has been valuable for verifying the
accuracy of runoff outputs; particularly their personal accounts of where
past flooding has occurred (or not) and where it might occur in future events.
The runoff simulation maps can be useful for stakeholders in rural
communities to assess their vulnerability to flood hazards without increasing
the danger of their doing nothing, based on a probabilistic assessment of a
flood occurrence.
The simulation outputs allow decision makers to trace the pathways of
surface water over the landscape, which can aid in the development of
adaptation strategies. Figure 19.7 shows an example of one adaptation
option generated for the town of Radisson (through LIRA) that might
include building a retention pond, dike, and grassed ditch along a natural
drainage pathway. Stakeholders have indicated that a well-drained area
exists further south where surface water does not generally accumulate, and
that this location may be able to absorb the redirected runoff. Of course, the
potential hydrological and hydraulic impacts of any adaptation strategy also
need to be assessed.

19.7 CONCLUSIONS

The recent large-scale flooding events in the Prairie Provinces have
demonstrated the need for better flood protection and mitigation strategies
in the region, which includes many ungauged basins. Conventional flood
hazard modelling approaches are generally unsuitable for assessments in
Prairie landscapes that are dominated by complexes of wetlands. A new
diagnostic runoff simulation tool, the WPDM, was used to generate
estimates of runoff flood hazard locations in Prairie landscapes.
The accuracy of the spatially distributed runoff map is partly dependent on
the quality and scale of the input digital elevation model (DEM) and also on
the depth of water applied to the DEM. LiDAR derived runoff maps provide
the greatest detail and also include the influence of roads on water
accumulation. Verification of runoff map outputs using ground and aerial
photographs, and stakeholder experience demonstrated that the runoff maps,
despite their inaccuracies, can be useful for assessing flood hazards in
ungauged Prairie basins where fill-and-spill flooding is of key concern.
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The methods applied here for the purpose of LIRA rely on the application of
reference water depths which are generally equivalent to return-period
rainfall amounts and the historical Vanguard event. The technical rigor of
the method could be improved by using runoff water depths provided by a
physically based Prairie hydrological model. Nevertheless, when verified
against recent flooding events in the spring of 2013, the ponding model
depicted the observed paths of rising waters and flood zones through the
communities and the surrounding landscape surprisingly well.
Conventional flood plain hazard assessments generally show the inundation
areas only along river reaches. Comprehensive flood hazard maps for the
Prairies should include entire landscapes, and could be generated by
combining estimated flood plain hazard zones and spatially distributed
runoff information provided by the WDPM. Specifically, combining the
spatial runoff modelling of the WDPM and a hydrological model capable of
simulating the unique aspects of Prairie hydrology may allow the generation
of spring melt runoff maps that are based on return-period runoff events.
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20.1 ABSTRACT

The workshop discussions about making predictions in ungauged basins in
different hydrological landscapes with different states of data availability are
summarized. While the science underlying hydrological prediction has
advanced considerably during the past decade, implementing the new
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science into practice remains a challenge. The workshop participants
identified a number of opportunities for addressing this challenge and
recommended developing a watershed classification system with a
generalized diagnostic to facilitate the transfer of results from research
catchments and other gauged watersheds to ungauged systems. These tools
should be developed adopting an open source framework with better
outreach to enhance the accessibility and adoption by practitioners.

20.2 RÉSUMÉ

Sont résumées les discussions de l’atelier quant aux prévisions en bassins non
jaugés dans différents paysages hydrologiques comportant différentes
situations de disponibilité des données. Bien que la science qui sous-tend les
prévisions hydrologiques ait fait des progrès considérables au cours de la
dernière décennie, la mise en pratique de la nouvelle science représente encore
un défi. Les participants à l’atelier ont cerné un certain nombre d’occasions de
composer avec ce défi et ont recommandé l’élaboration d’un système de
classification des bassins hydrographiques favorisant un diagnostic généralisé
pour faciliter le transfert des résultats des bassins de recherche et autres
bassins jaugés aux bassins non jaugés. Ces outils doivent être conçus en
adoptant un cadre de source ouverte d’une meilleure portée afin d’en accroître
l’accessibilité et l’adoption par les professionnels en exercice.

20.3 INTRODUCTION

This paper provides a summary of the break out sessions from the Putting
PUB into Practice [P3] meeting in Canmore, Alberta, in 2011. At the
workshop, issues related to prediction in ungauged basins were discussed in
relation to (1) type of landscape (e.g., high mountain, boreal), and (2) data
availability (data-rich, data-sparse, and data-poor). This summary focuses
on commonalities and differences of PUB challenges across landscapes and
data richness. Through this comparison, we seek to share and consolidate
between and across: 

• The PUB themes and working groups,
• The variety of regional efforts and perspectives,
• The different approaches that maximize the predictive value of

streamflow data, other data, and their use, 
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• The approaches that maximize the use of physically based theory
and process structure, process variability, and their emergence into
predictive approaches, 

• The inclusion of new measurement and information technologies for
meteorological inputs, process verification, and catchment
characterization, and

• The continuation of the exploration of improved models and tools that
reflect improved hydrological understanding and their use in practice. 

One key task was to identify opportunities for future developments or new
perspectives that would contribute to the main issue of turning research into
accessible tools that improve the practice of making predictions in ungauged
basins. In particular, could approaches developed and validated for data-rich
areas be adapted as prediction tools for data-sparse and data-poor areas?
All of the break out groups addressed common discussion points, but each
focused on a different hydrological landscape. The participants represented
a broad cross section of researchers and practitioners having a range of
experience and expertise in hydrology and in different landscapes. Table
21.1 contains the guidance that was provided to each of the six break out
groups over the three days of the meeting. A list of the workshop participants
is provided in the Appendix to this volume. 
This summary begins with a brief description of the attributes and
monitoring issues associated with the six hydrological landscapes upon
which the discussions were focused. Then, the scales and methods of
hydrological analysis being used in predictions in ungauged basins are
addressed. The barriers to adoption and implementation of new methods as
identified by the participants are described. Following on these
commonalities, the specific issues characterizing the hydrological
landscapes are provided. The summary ends with a series of recommended
actions, research, and tools for future work.

20.4 HYDROCLIMATIC / LANDSCAPE REGIONS

The key attributes of the hydrological landscapes considered by the break
out groups are given in Table 21.2. The key types of predictions required in
ungauged basins are also identified. Water supply is an issue common to all
landscapes, but each landscape has a specific set of relevant hydrological
attributes.
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a) Data-Rich

b) Data-Sparse

The PUB issue in “Data-Rich” areas is not whether good predictions can be made

for ungauged sites as both empirical and deterministic modelling approaches are

likely to be successful. The challenge in these situations is to learn about how to

use those methods to reduce the uncertainty of predictions in ungauged basins.

1) How can the various approaches for hydrological prediction in this

hydroclimatic region be implemented given the availability of

meteorological and catchment data and current understanding of

hydrology?

-small spatial scales, short time scales

-large scales, longer time scales

2) How can PUB predictive approaches be improved? Is there additional

process understanding required or additional data required?

3) How can the available hydrological tools contribute to products usable

by practitioners?

4) How can information gleaned from data-rich regions be applied to more

data-poor regions?

The PUB issue in “Data-Sparse” areas is whether good predictions can be made

for ungauged sites using modelling approaches that are ‘likely’ to be successful.

How can empirical information be used to extract sufficient information from the

limited observation records to validate models where data are sparse? The

challenge in these situations is to learn about how to use those methods to

understand the uncertainty of predictions in ungauged basins.

1) How can the various approaches for hydrological prediction in your

hydroclimatic region be implemented given the availability of

meteorological and catchment data and current understanding of

hydrology?

-small spatial scales, short time scales

-large scales, longer time scales

2) How can PUB predictive approaches be improved? Is there additional

process understanding required or additional data required?

3) How can the available hydrological tools contribute to products usable by

practitioners?

4) How can information gleaned from data-sparse regions be applied to

more data-poor regions?

How can we address practitioners’ needs for tools
to do PUB?

How can we extend the information based upon
data-rich PUB to other areas?

How do we address practitioners’ needs for tools to
do PUB?

How can we extend the information based
upon data-sparse PUB to other areas?

Table 20.1 The guidance provided to each of the break out groups during the workshop.
The three parts took place on successive days.



Arid and semi-arid

A semi-arid (sub-polar) region receives precipitation equal to or less than the
potential evapotranspiration. Many semi-arid areas are characterized by
high spatial variability in rainfall making it difficult to quantify areal rainfall
inputs into hydrological and water resource simulation models (Paturel et
al., 1995; Andréassian et al., 2001; Fekete et al., 2004). 
Semi-arid areas exist in both cold (e.g. Tundra) and warm (e.g. Prairie)
regions, and groundwater may be more important than rivers as a water
resource. Temporary streams are common in semi-arid regions (Buttle et al.,
2012). Intensive agriculture and irrigation are often widespread in warm
semi-arid regions. Hence, in semi-arid regions the effect of land use may
overshadow those of climate and weather, increasing the complexity of
modelling and analysis. 
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c) Data-Poor

The PUB issue in “Data-Poor” areas is whether good predictions can be properly

validated. How can empirical information be used to extract sufficient data

coverage from the limited observation records to validate models where data are

poor? The challenge in these situations is to learn about how to use those

methods to understand the uncertainty of predictions in ungauged basins.

1) How can the various approaches for hydrological prediction in your

hydroclimatic region be implemented given the availability of

meteorological and catchment data and current understanding of

hydrology?

-small spatial scales, short time scales

-large scales, longer time scales

2) How do predictive approaches need to be improved? Are there options

other than additional process understanding required or additional data

required?

3) How can the available hydrological tools contribute to products usable

by practitioners?

4) How can information gleaned from data-poor regions be better applied

to other data-poor regions?

How do we address practitioners’ needs for
practical tools to do PUB in data-poor areas? Tools for validating
or confirming predictions?

How can we extend the information
based upon data-poor PUB to provide feedback to the
developments made in data-rich and data-sparse areas?

Table 20.1 (cont’d)
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Type Sub-Type Characteristics & PUB Connection

Arid &

Semi-arid

Mountains

Temperate

Agriculture

Temperate

Forests

Arctic &

Boreal

Tropical

Warm

Cold

Warm

Cold

Warm

Cold

Taiga

Tundra

Humid

Semi-arid

Potential Evaporation exceeds precipitation

Groundwater plays an important role

Extensive grasslands

Drought, flooding, and water supply

Steep elevation and vegetation gradients

Snow, snowpack development, and melt processes

High watershed gradients

Glaciers and glaciation features

Hydropower, fish habitat, water supply, and flooding

Extensive soils

Large conversion of landscape through tillage and

modifications

Hydrological modifications also extensive; storages,

abstractions

Drought, wetlands, and ecological values

Evaporation

Large conversion of original forests

Insects, deforestation, and forest rotation

Sediment transport

Hydropower, fish, aquatic habitats, and flooding

Long, extremely cold winters

Latitudinal vegetation gradients

Low station densities and bias towards very large

basins >100 000 km2

Hydropower, resource development, and

ecological values

High rainfall intensity and depth

Strong seasonal rainfall regime

Seasonally hydrophobic soils

Large surface runoff components and high sediment

loads

Drought, flooding, sediment transport, water supply,

and groundwater

Table 20.2 Summary of the main attributes of the hydrological regions used in the
discussions. The text in italics indicates the predominant needs for predictions in
ungauged basins in the region.



Streamflow records are often sparse in semi-arid regions as many
watercourses lack continuous flow. In many jurisdictions, gauges are
operated seasonally or only during short periods of the year. Rainfall
networks are too sparse to adequately observe precipitation processes that are
strongly convective in summer and predominantly snowfall during winter. 

Mountains

Mountainous areas generally receive greater precipitation than lowland
areas and have low evapotranspiration, and thus are efficient generators of
streamflow that is a critical water resource in densely populated downstream
areas. Much of the precipitation is stored as snow or ice for periods of time
(months in the case of snow, many years in the case of ice) and is later
released during the spring-summer melt period. In many high mountain
regions, glaciers play an important role in supplementing streamflow in late
summer and early autumn and regulating the interannual variability of
streamflow (Fountain and Tangborn, 1985; Stahl and Moore, 2006).
Mountainous areas generally have low population densities and are poorly
gauged outside of research basins. Weather stations tend to be located in valley
bottoms and do not represent the higher elevations due to orographic effects.
In addition to this dependence on elevation, key hydroclimatic variables
(temperature, precipitation, solar radiation, humidity, wind speed) also vary
strongly with slope and aspect and as a result of complex interactions between
weather systems and topography, such as seeder-feeder precipitation
processes and rain shadow effects. Extrapolation of hydroclimatic information
from weather stations to account for this spatial variability is a key challenge
in making hydrological predictions in mountain regions.
Gauging stations are also predominantly located in valley bottom sites on main
stem channels. As a consequence, streamflow records integrate runoff from a
broad range of elevations, and measured streamflow may not represent the
quantity and timing in smaller headwater catchments. Due to the combination
of sparse monitoring networks and biased station locations, almost every water
resource analysis in mountainous areas is an exercise in PUB. 

Temperate forests

This landscape comprises the forested areas between the tropics and the
boreal forest. In this landscape there have been conversions of large areas of
the original forests through harvesting and subsequent replanting or
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regeneration for repeated harvesting cycles. These areas are also subject to
changes that accompany natural disturbances such as wildfire and insect
infestations, as well as deforestation associated with conversion of land to
agricultural, urban, and other non-forest land use. The hydrological variables
being predicted in ungauged temperate forest basins are principally runoff
and evaporation. The types of hydrological predictions required in these
areas are wide ranging, from water supply estimates to hydrological
variables that support protection of ecological values.
As this landscape contains highly populated settlements, temperate forests
are generally better monitored than other regions with respect to both
climate and streamflow; however, monitoring networks for climate and
streamflow are generally disconnected from each other as the networks
developed separately to meet different needs. This often results in
practitioners having access to local observations (e.g., of precipitation and
streamflow) but not from the same watersheds, so that data extrapolation is
a key challenge in PUB applications.

Temperate agricultural

Temperate agricultural landscapes are typified by extensive well developed
soils. Typical of these areas is the extensive conversion of landscape through
tilling, draining, and other modifications. Hydrological modifications are also
extensive. Drainage alterations, drainage of natural storages such as wetlands
and creation of artificial storages, and water abstraction and augmentations
through irrigation result in watersheds with altered hydrological responses. In
addition, drainage areas may become disconnected for periods of time
resulting in variable watershed contribution areas.
With these extensive and complex modifications of the landscape and water
on the landscape, monitoring and process-based observations alone will not
be sufficient to model these systems; effective models for prediction in
ungauged basins must take into consideration these landscape changes.

Arctic and boreal

The boreal forest is a circum-global ecozone dominated by long cold
winters, peat deposits, and coniferous forests. North of this is the arctic
region; above treeline the vegetation is tundra. Evapotranspiration is the
dominant hydrological flux in the boreal and arctic region. A key feature of
the region is the importance of storage of water on the landscape both in
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shallow lakes and in frozen form as seasonal snowpacks, and in some
mountainous catchments, as multiple-year to decadal storage as glaciers.
Outside of research basins, forcing data are only available at a coarse scale.
Hydrometric gauge density in the Arctic Ocean drainage basin has remained
static at ~1 per 104 km2 (Shiklomanov et al., 2002). While ~70% of the pan-
arctic area is gauged, most of that area is observed only at the mouths of very
large rivers, such as the Mackenzie (1.8 million km2) and Lena
(2.5 million km2) basins (Prowse and Flegg, 2000). Even though most of the
largest basins are gauged, data collected at the mouths of these major river
systems does not adequately provide a representative picture of the flow regime
characteristics of the smaller watersheds that feed into these large systems.
Processes operating at small spatial scales generally differ from those found
within the large river systems. The fraction of small catchments (i.e. less than
10 000 km2) that are gauged remains unacceptably small (e.g. 0.8% in the
Mackenzie). Region-specific flow characteristics that are critical to ecosystem
health (Poff et al., 1997) are masked in the flows of the larger system and often
require decades of times series data to understand (Burn et al., 2008). 
Without the benefit of local, region-specific monitoring, important annual
and inter-annual flow variation of the smaller river systems is not well
observed and is often not understood; this can have substantial importance
to local and regional communities. Because few small basins are monitored,
the current sample of gauges cannot be assumed to be representative of the
range of basin characteristics across the arctic and boreal landmass – thus
there remain many catchment types (particularly those that are small and/or
glacier fed) for which there is little to no data (Spence and Saso, 2005;
Spence and Burke, 2008). The small sample and inherent spatial and
temporal variability in runoff response from these catchments increases
uncertainty in hydrological prediction for this region. 

Tropics 

The humid tropics and semi-arid tropics have distinctive hydrological
characteristics that distinguish them from each other and from other
hydroclimatic zones. The humid tropics are characterized by high rainfall
intensity and depth, generally with a well-defined seasonal rainfall regime.
These characteristics can lead to high volumes of surface runoff, high
sediment loads, and seasonally hydrophobic soils. Temperatures are warm
year-round. The semi-arid tropics are much drier than the humid tropics, but
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also exhibit strong rainfall seasonality. In the humid tropics, large scale land
use change is one of the major water management issues (Eden and Parry,
1996), as conversion of forested lands to agricultural use can result in
changes to the seasonal distribution of runoff. This, in turn, can have
significant effects on water use and availability, water quality, sediment
loads, and ecology. In the semi-arid tropics, the main water management
issues are somewhat different, instead focusing on drought prediction and
management (Mishra and Singh, 2011). Prediction of droughts and drought
frequency, estimating yields from reservoirs or other small scale water
resource structures, and efficient conjunctive use of surface water and
groundwater are all important water management objectives. 
Hydrological processes of particular importance in the tropics include:
interception loss, especially within the dense multi-layered canopy of
tropical rain and cloud forests; vegetation-atmosphere, surface water-
groundwater, and soil-atmosphere interactions; and changing land use,
especially given very high rainfall intensities. The latter is important in the
semi-arid tropics as mentioned previously. Understanding these important
processes in the catchment of interest goes hand in hand with data collection
since the data help to illuminate important processes, and an understanding
of the important processes can inform what data are needed. 
Throughout the tropics, data availability is limited and the reliability of data
can be problematic, making prediction of flow difficult for large ungauged
areas (Hughes, 2006). Data-rich areas are generally limited to a small
number of well-resourced areas, and extrapolation to the majority of the
catchments which are ungauged represents a serious challenge for both
science and practice. Many areas also lack centralized water resource
management institutions, which further exacerbates the problems of data
access and contributes negatively to the sharing of expertise in water
resources estimation methods.

20.5 METHODS FOR PUB APPLICATIONS

The methods currently in use for prediction in ungauged basins are varied.
Simple approaches that are in common use include data transfer methods
and techniques such as rule curves and the rational method, in addition to
field-based methods based on channel morphology. In areas with sufficient
data, statistical approaches such as regional regression analysis are popular
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among practitioners. Process-based models, both conceptual and physically
based, are rarely applied, although substantial research effort has focused on
developing and testing them. 

Data transfer

A common approach is to identify a gauged catchment that is judged to be
similar to the target catchment, and then to adjust flows to account for
differences in drainage area. Back-of-envelope adjustments can be made to
account for differences in glacier cover or other attributes. This approach
can be improved upon by installing a short-term gauge on the target stream
to verify any empirical relationship between the target stream and the
gauged stream. In regions where the basin contributing areas are not
constant, this method can be very difficult to apply.

Geomorphic approach 

Where no usable streamflow or weather records are available, a geomorphic
approach can be used to estimate design peak flows. In this approach, a
channel survey is conducted to determine bankfull channel geometry and
roughness. Manning’s equation is then used to estimate velocity and bankfull
discharge, which is often assumed to coincide with a return period of two
years; however, in some landscapes the bankfull return period may be greater.

Generalized rainfall-runoff relations

A number of approaches have been developed to predict runoff response
from rainfall at a range of temporal resolutions. Many of these methods are
popular in engineering applications, and involve the use of tables or
diagrams to estimate parameters based on catchment characteristics such as
topography and vegetation cover. For example, synthetic unit hydrographs
can be used to estimate stormflow response during an individual storm
event. The rational method is commonly used to compute design floods in
cases where no usable streamflow records are available, but rainfall intensity
has been recorded at a weather station in or near the target catchment;
however, because most precipitation gauges are in valley bottoms, measured
rainfall will typically underestimate actual rainfall over the catchment. A
fundamental criticism of these rainfall-runoff relations is that peak flows in
regions with cold winters typically occur as a result of spring-summer
snowmelt or mid-winter rain-on-snow events and not simply rainfall.
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Statistical modelling 

Where a sufficient number of gauges are available, it may be possible to
derive statistical relations between streamflow metrics or flow duration
curves and predictor variables based on catchment characteristics such as
drainage area, geology, land cover, and elevation. These relations are
commonly derived using techniques such as multiple regression. In addition,
geostatistical methods such as kriging can be used either on their own or in
conjunction with multiple regression (e.g. by using kriging to interpolate
prediction errors to account for any spatial autocorrelation). In British
Columbia, for example, Eaton et al. (2002) used geostatistical interpolation
to map a “k factor” computed from gauged basins as k = Qma/A0.75, where
Qma is the mean annual flood and A is the drainage area (km2). The k factor
represents the mean annual flood for a catchment with a drainage area of
1 km2. To compute the mean annual flood for an ungauged basin, the k
factor is extracted from the map and then multiplied by the drainage area
raised to the power 0.75. An advantage of these statistical methods is that
they can provide estimates of the prediction error.

Process-based modelling 

Data-based and field-based methods as described above cannot account for
changing climatic conditions or changes in land cover. For example, forest
recovery following the extensive tree mortality associated with the recent
outbreak of mountain pine beetle in western North America will
fundamentally change the water balance of affected catchments over the
coming decades. In contrast, process-based models have the potential to
address all of the weaknesses associated with currently used methods. Their
temporal resolution can match the resolution of available forcing data, and
models can, in principle, explicitly represent the effects of changes in land
cover (e.g. Koboltschnik et al., 2007). Despite their potential advantages,
process-based models are not routinely used in water resource analyses. A
major challenge to the use of process-based models in PUB applications is
their need for input data. A complete suite of weather forcing data for
physically based simulation of melt and evapotranspiration would include
air temperature, precipitation, humidity, solar radiation, and wind speed. At
minimum, process-based models require air temperature and precipitation
at daily or higher temporal resolution; humidity and solar radiation can be
estimated from temperature and precipitation, if required (Walter et al.,
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2005). In addition to weather forcing data, state variables such as
snowcover and snowpack water equivalent can be valuable for model
development and testing. 

Considerations in the choice of PUB method

Depending on the application, a range of prediction targets may be of
interest. For example, broad scale screening assessments may require only
mean annual runoff. For the planning of large reservoirs, annual runoff and
its interannual variability may be relevant. For many infrastructure design
needs, a flow extreme associated with a specific return interval may suffice,
such as the 200-year flood or the 10-year 7-day low flow. In other cases,
time series of discharge at daily or shorter time intervals may be required. 
In principle, a process-based hydrological model that runs at a daily or sub-
daily time step, in combination with an appropriately long time series of
input data, could be used to generate the full range of prediction targets. In
practice, however, simpler methods that are less expensive to apply could be
appropriate if their predictions were sufficiently accurate for the project
requirements. As an example, consider mean annual runoff as a prediction
target. It can be predicted using statistical relations with drainage area
defined using a regional monitoring network, which can generally provide
estimates within an order of magnitude. While this approach is efficient, it
does not necessarily provide estimates within an acceptable level of
uncertainty, nor does it provide information about seasonal patterns
(Whitfield and Spence, 2011). In order to provide bounds for these estimates
and extreme values, we can use a combination of traditional knowledge
(Woo et al., 2007), hydraulic geometry measurements (McNamara and
Kane, 2009), and paleo-records (Fortin and Lamoureux, 2009). Vegetation
and animal species diversity regimes can also be indicators of floodplain
extent and, in turn, of the extent and duration of extreme high flows.
Statistical regression techniques can be robust (Lee and Ouarda, 2010), but
if the regional monitoring network does not include physioclimatically
and/or hydrologically similar gauging sites to those of the target catchment,
the results may be dubious (Spence and Burke, 2008). An alternative is to
use catchment classification indices (Quinton et al., 2003). Where time and
financial resources permit, short term gauges can be installed in the basins
of interest and the resulting datasets can be used to develop relationships
with long-term operational gauges. 
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In New Zealand, mean annual discharge is estimated from maps of mean
annual precipitation and evapotranspiration. This estimate is checked for
consistency with nearby gauged catchments, and is then prorated to monthly
flows on the basis of maps of monthly flow proportions. 
Deterministic models are often used by electrical utilities for short-term
forecasting (e.g. St. Hilaire et al., 2010) and to simulate streamflow under
climate change scenarios (Kattsov et al., 2007); however, they are not
necessarily the most feasible tool to determine long-term streamflow regimes
because the length of climate data required to force them rarely exists.
Stochastic weather generators (Srikanthan and McMahon, 2001) that mimic
observed or potential climate regimes have been used as an alternative.

Snowcover and snowpack water equivalent

The availability of snowcover information from the Moderate Resolution
Imaging Spectrometer (MODIS) platform and other distributed snow products
are potentially valuable targets for model calibration. Finger et al. (2011) used
MODIS snowcover information along with streamflow to calibrate a
catchment hydrology model. Boyle et al. (this volume) found that the use of
the SNODAS product as the sole calibration target generated a parameter set
that also performed well for simulating streamflow. A weakness with MODIS
and other optical remote-sensing products is the effect of cloud cover, which
can severely limit the completeness of snowcover scenes in mountain regions. 
Snow water equivalent is more difficult to sense than the snow extent.
Natural gamma emissions measured from low flying aircraft can provide
estimates of SWE, although the measurements can also be affected by the
presence of ice lenses or liquid water in the snowpack or underlying soil
(WMO, 2008). In North America, NOAA conducts airborne gamma snow
surveys over many northern states as well as portions of Canada.
Other passive measurements, generally made from satellites, are also used
to estimate SWE. These measurements may use a wide variety of
electromagnetic frequencies, including microwaves. The condition of the
snowpack (crystal size, wetness) and blocking/shading due to vegetation or
topography can cause large errors in the magnitudes of the estimated SWE.

Evapotranspiration

Evapotranspiration is often only treated in terms of estimations and general
classes. There are problems of availability of validation data, in particular at

284

Putting Prediction in Ungauged Basins into Practice Whitfield et al



different temporal scales, e.g. monthly versus daily. Methods are available for
regionalization in space and time, e.g. via PRISM. It is possible to model
solar radiation reliably for monthly data as an input to evapotranspiration, but
cloud cover remains an obstacle at shorter time intervals. Sometimes this can
be overcome by using weather satellites. Alternatively, daily air temperature
range can be used to model the effects of cloud cover on incident solar
radiation at a daily time-step (e.g. Bristow and Campbell, 1984). It is also
important to define actual versus potential evapotranspiration. Techniques
such as the scintillometer are available for this. Global estimates of
evapotranspiration are available at the 1 km grid, for example from MODIS,
AIRS, and CERES. Although this resolution is too coarse for complex
terrain, it may be useful in semi-arid regions without too much variability in
vegetation or in any region without complex topography. The effects of
climate change on evapotranspiration remain difficult to evaluate, in
particular when long-term projections on the variability of evapotranspiration
are required. Projecting vapour pressure changes in the atmosphere remains
a substantial challenge.

20.6 COMPARISONS ACROSS LANDSCAPES

Process Understanding

The need for process understanding is common to all landscapes. Before
selecting any conceptual model, a basic understanding of the important
processes that play a dominant role within the catchment is needed (Weiler
and McDonnell, 2004; Abesser et al., 2008), along with knowledge of how
the dominant processes change between the seasons and how they vary
spatially. Put simply, scientists and practitioners both need to understand the
water balance, in particular how water storages, fluxes, and pathways are
affected by landscape factors including:

• seasonality of precipitation and evaporative demand 
• groundwater 
• surface water impoundments
• soil moisture and storage
• wetlands
• vegetation – interception, transpiration
• other development, including urban areas
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Data-rich regions

Spatially, the definition of “data-rich” depends on the density of
meteorological and hydrological (surface) as well as groundwater
(subsurface) stations. It also depends on the diversity of data types and the
degree of connection between different scales of data. Temporally, “data-
rich” depends on the time-step between observations in relation to the time
scale of the hydrological processes, and the length and resolution of data
record. It is important to consider the applicability of data from data-rich
catchments and whether the full range of available variables can be
exploited in models, including the following:

• weather stations at high and low elevations
• streamflow
• topography and land cover 
• soil information
• glacier mass balance
• snowpack SWE

We need to consider that developing understanding in the application of
conceptual or process-based models in a data-rich situation should
contribute heavily to predictions in ungauged basins where data are not
available. While practitioners in data-rich areas may face less uncertainty
than those in other areas, they have the opportunity to document the limits
of statistical, conceptual, and process models and thus can potentially
contribute to quantifying uncertainty in the data-sparse and data-poor
contexts. Restated, models developed in data-rich areas need to be fully
explored and exploited before applying them to areas where supporting data
are not as available. 
In all landscapes, data-rich areas are primarily associated with experimental
watersheds or long-term ecological research areas. These research sites are
generally small in area (i.e. less than 100 km2) but frequently have data for
long periods of time for many relevant variables.

Data-sparse regions

Any definition of “data-sparse” depends on the type of landscape being
considered, e.g. homogenous plains vs. highly variable mountain terrain; it
also depends on the representativeness of the scale of variability. Spatially,
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“data-sparse” was considered to include only one or two observation
locations within a basin, thereby excluding the ability to resolve spatial
variations. Temporally, in “data-sparse” areas, observations cover only short
periods of time (i.e. one or two years) or are inhomogeneous data series
where data overlap only during relatively brief periods. Measuring stations
are spaced at intervals of at least 400 km or are situated out of the basin in
similar regions. Only limited variables are available and the data are
insufficient for both calibration and validation of predictive models. The
data-sparse classification could also apply to basins that are covered by
remote sensing data, but no monitoring stations to ground truth these data. 
In data-sparse regions, complex questions cannot be answered using
available data and current PUB methods. Management decisions, however,
do not always require complicated models and equations; rather they rely on
confident predictions. Scientists are often asked how to reduce uncertainty
of forecasts or predictions. This is frequently a question of the amount of
time or money that can be invested with relation to actual improvement. The
reduction of uncertainty also depends on how to determine the best location
for answering the question. Managers in these situations need to make
decisions that consider or tolerate irreducible uncertainty. From this
perspective, social adaptation or risk based decision making may be a better
alternative. 
Understanding and modelling in data-sparse areas may be difficult to
validate as fully as might be possible in data-rich situations. Here the
practitioner needs to accept being dependent upon a combination of good
judgement in selecting models and reasonable scales (temporal and spatial)
and in choosing how to use the available data, either in calibration or
validation. At the same time, a similar level of judgement needs to be
applied to interpretation of the results. The quality of predictions in data-
sparse applications is necessarily of lower confidence and resolution than in
data-rich applications. It would be useful to develop a nomograph or index
table that would assist the practitioner in this effort; such an approach might
relate the hydrological attribute to the available data. Simply put, the annual
mean flow can be predicted in a data-rich area with more precision than in
a data-sparse area; monthly or daily flows that could be predicted with some
accuracy in a data-rich application might be unreasonable to generate where
insufficient data exists.
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Data-sparse areas are often the result of the uncoordinated interests of
resource and management agencies. Frequently, meteorological and climate
networks were located in relation to settlements and to aviation facilities.
Water networks, specifically for water levels and streamflows, developed in
relation to resource development (railways, hydropower) and concerns over
flooding (floodplain settlements). Soils and soil moisture were observed
within agricultural and forestry agencies. The net result is that in most data-
sparse landscapes the lack of coordination and exchange is a factor in the
availability and/or complementarity of data.

Data-poor regions

While data-poor regions, by definition, lack sufficient ground-based
information for hydrological prediction, there is potentially a wealth of
usable information from remote-sensing platforms (particularly in the form
of digital elevation models and maps of land use and land cover) and output
from global and regional climate models. The main obstacles to providing
this information to users, beyond lack of data availability, are restrictions in
data processing capacity and the lack of graphical interfaces, user manuals,
and documentation. For example, remote sensing data such as MODIS are
widely available but often lack an interface to help with transferring it into
GIS for use by practitioners. The North American Regional Reanalysis
(NARR) product provides spatially distributed weather information at daily
or sub-daily time scales, but is difficult for practitioners to use since it
requires an interface or specialized programming skills to access and
manipulate. One reason for the difficulty is that gridded data are generally
organized as temporal snapshots and consequently require the user to
download, disaggregate, and combine many large individual files to produce
time series for specific locations or catchments.
It is an open question whether the practitioners or the scientists should be
responsible for developing easy-to-use tools for accessing and processing
gridded data sets. Scientists generally do not feel responsible for translating
their research results into practical tools or lack the motivation to do so as their
reward system is based on scientific publications, not practical application; but
on the other hand, practitioners often do not have the money or time to invest
in developing tools for accessing and processing the available information.
There is a clear need for someone to operate at the interface between scientists
and end-users, e.g. from technical colleges and governments. 
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Data-poor areas exist within all landscape types but are particularly
prevalent in arctic, arid, and semi-arid regions, which are also commonly
water-poor unpopulated regions. This leads to a reliance on predictions in
ungauged basins in these water sensitive landscapes, which are increasingly
the focus of resource development. Lack of information and data leads to
greater uncertainty for any predictions made for these sensitive regions.

Differences among landscapes

Two factors strongly affect how much data are available in a given country:
the density of population and the economic status. There are generally more
data available in populated areas of developed countries than in unpopulated
areas or developing countries. Within any of these contexts, data are likely to
be more available in areas where water issues such as flooding and drought
are recurrent. There may also be a cultural bias, as data seem to be more
available where there has been an influence from the historical situations;
British Empire military installations, for example, often provided detailed
observations of weather and climate. The distribution of data networks is also
affected by economic interests related to potential development, such as wind
power and hydropower, and potential risk, such as flood prone areas. In many
areas there are more monitoring data available where there are more people
and water than in areas where there are fewer people and less water.

20.7 BARRIERS BETWEEN RESEARCH AND PRACTICE

The break out group discussions illustrated a divide that presently exists:
researchers are focused on methods that are dynamic, detailed, information-
rich, and rely on extensive observations; practitioners are using simple user-
friendly methods that can be applied in areas with sparse monitoring, and that
sometimes involve soft data or subjective judgement. The time scales of the
predictions are also often different. The scale of hydrological predictions
required ranges from simple annual values to seasonal, monthly, and finer
time scales and also includes extreme events. The types of predictions that
are needed or expected also vary from water rich to water poor areas. The
variables to be predicted can be fluxes, states, or storages.
Researchers continue to contribute to all areas needed to improve
predictions in ungauged basins, including process understanding and
development and testing of empirical, statistical, conceptual, and process
models. These developments continue, not always linearly, but are highly
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influenced by observation technology and computer capability and capacity.
While these tools have promise for improving predictions for ungauged
basins, their uptake by practitioners does not automatically follow.
Practitioners need to be provided with modelling tools and once researchers
have developed effective tools, there needs to be uptake by the user
community. Users need to be provided with the tools and required data
products in a manner that minimizes their investment of time and resources.
In research, data sources such as gridded fields of driving variables can be
accessed via the internet, sometimes along with software tools for extracting
the information required in a specific application and exporting it to a format
required by a model. Such tools could be better suited for use by practitioners
in the form of a graphical user interface or a simple scripting language;
however, practitioners are not in a position to adopt tools that require
intensive relearning and technical support, while the research community is
unlikely to put a high priority on developing such tools or to provide training
to the practitioner community. One existing solution would be research
partnerships, possibly funded by regulatory or government agencies, focused
on technology transfer that supports implementation of research and
development, and on providing a level of training commensurate with the
need for practitioners to use the appropriate tools.
An important issue with obtaining data from the internet and agency
databases is fitness for purpose (Whitfield, 2012). Data which are available
may, or may not, be suitable for supporting predictions in ungauged basins.
Practitioners need tools and guidance that support them in making effective
and appropriate decisions about the use of such data in their application. One
consequence of data becoming widely available on the internet has been a
decline in the professional guidance available to ensure the user understands
the nature of the data. Tools that better communicate metadata and inform the
user of data quality and its representativeness are needed.
The adoption of new approaches, including process-based models, is
generally constrained by cost and aversion to change: clients are typically
unwilling to invest in new tools when simpler methods are acceptable or
required by regulators. There is a need to weigh the lower cost of analysis
associated with simple methods against their risk of failure. It is conceivable
that, in some cases, the risk of an erroneous analysis may be sufficiently low
that there is no economic incentive to pursue application of model-based
approaches. In other cases, there may be clear economic arguments in favour
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of model-based analyses; however, it is expected that everyone would rely on
getting the right answer for the right reasons. Other barriers expressed by
practitioners include the following:

• Lack of awareness of emerging approaches and model
developments. Some of these are related to the cost of accessing
journal articles, as well as limited time to devote to professional
development activities, such as attending conferences

• Cost of purchasing another model and the cost of retraining
• Aversion to the risk of investing time in learning an approach that

may not be widely accepted, especially to regulators
• Familiarity with existing models and tools and project timelines that

are too tight to allow for alternatives to be implemented

One possible approach that was identified is not to build a model and then
customize data inputs and model outputs to it. Rather the focus should be to
develop a platform where data and output handling is conducted through a
standard interface. Models should be supported by complete documentation
and either a graphical user interface and/or a straightforward scripting
language to facilitate training and application. An example of a relatively
easy-to-use platform is Green Kenue. Green Kenue™ (formerly EnSim
Hydrologic) is an advanced data preparation, analysis, and visualization tool
for hydrological modellers. It provides a platform that integrates
environmental databases and geospatial data with model input and output.
Green Kenue provides pre- and post-processing for the WATFLOOD and
HBV-EC hydrological models. It can be downloaded without cost at:
http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/.
Potential barriers to the adoption and development of these resources by
model developers include the following:

• Lack of skill in software applications implementation
• Lack of awareness of user environment and needs
• Lack of forward planning in model development that ensures

linkages with existing tools
• Competition and aversion to risk in participating in applied research

which may not be recognized in academic/research career
promotions

• Lack of a reward system for researchers, thus no motivation to make
models user-friendly or to offer training

291

20 – Summary and Synthesis of Workshop Break out Group Discussions



Potential barriers to the adoption of these resources by practitioners include
the following: 

• Lack of awareness of the existence of the tools
• Inertia, particularly when considering new tools
• Dedication to familiar tools, particularly those used during

university training, or commonly used for other applications
(e.g., Excel, MATLAB, ArcView)

• Vendor lock-in, where the customer is dependent on a commercial
program, and switching to another program incurs costs

• Lack of technical support in dealing with onerous data requirements,
data handling, and requirements for specific programming skills.

20.8 RESEARCH NEEDS AND EMERGING METHODS

Many research and application needs and opportunities were identified in
the workgroup discussions. In this section those which were common to
several groups are described.

Catchment characterization

One way to strategically choose and collect transferable data is the
development of a classification system for watersheds. Catchment
classification has been advocated within the Predictions in Ungauged Basins
initiative for some time (McDonnell and Woods, 2004). While there have been
streamflow regime classifications for some regions (e.g. Church, 1974), a
general catchment classification system has not yet been developed. While
basin-scale classification systems exist for particular regions, a general system
should be based on physioclimatic characteristics to enable the prediction of
the streamflow regime and other hydrological behaviour (Wagener et al.,
2007). Basin classification can be based upon several traits, including
topography (e.g. relief), hydraulic geometry (e.g. channel morphology),
vegetation (e.g. NDVI distribution), or response units (e.g. hydrological
function and distribution). Several classification schemes may need to be
developed and/or combined so that the most appropriate transfer mechanisms
are available for individual indices, parameters, or indicators. While one size
may not fit all, it will be important to avoid applying an existing regional
classification too widely. This is a classic hydrology trap; develop locally and
then apply globally.
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An approach would be to identify several representative basins and develop
appropriate classification schemes. Building from that, developing and testing
index, parameter, or indicator transferability across a range of space and time
scales is needed. This process must incorporate a feedback mechanism to
improve the design and implementation of research basins and the activities
therein. This will also assist in guiding research and monitoring efforts that
can continue to support the development of transferable data and information.
In every region where data availability is at a premium, parsimony, in both
data collection and modelling, must remain a key consideration. 

Catchment characterization will be an important tool in transferring
parameterizations. Characterization schemes will need to account for climatic
thermal and moisture regimes (particularly the seasonality of precipitation),
land cover, topographic complexity, and geology. Tague and Grant (2009)
illustrated the profound influence that the underlying geology can have on
streamflow variability and the response to climate variability. Geological maps
are generalized, and it may be difficult to translate geological information from
maps into hydrologically relevant parameters related to storage and transport
dynamics. Research that extends the work of Tague and Grant (2009) to a wide
range of geological and hydroclimatic contexts is needed.

For the foreseeable future, semi-distributed models will likely dominate
over fully distributed models due to their lower computational demands.
Current semi-distributed models use either a Grouped Response Unit (GRU)
or a Hydrological Response Unit (HRU) approach. 

In the GRU approach, a catchment is normally represented using gridded
maps of various boundary conditions, including elevation, slope, aspect
(derived from the elevation grid), underlying geology and/or soil types, and
land cover (e.g., forest/open/water/glacier). Individual grid cells are
categorized and cells with similar characteristics are grouped; heat and
water fluxes are then modelled for each GRU rather than each individual
cell. The delineation of cells is presently constrained, in part, by the
resolution of digital maps. Digital elevation models are increasingly
available with grid resolutions less than 100 m. Land cover maps are also
available at increasing resolution. Characterizing land cover, particularly
accurate land use information, is difficult. Rapid and widespread land use or
land cover changes such as agriculture, irrigation, or forest disturbance (e.g.
Mountain Pine Beetle) add a considerable challenge.
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An important difference between HRUs and GRUs is that GRUs do not
normally incorporate any information on lateral interactions between grid
cells. On the other hand, HRUs are defined in consideration of their relative
position within the cascade of lateral water transfers by, e.g., elevation,
blowing snow, and subsurface flow, in addition to the types of criteria used
to define GRUs. Delineation of HRUs is normally guided by land cover and
geomorphology that guide the modeller’s understanding of the dynamics of
storage, connectivity, and thresholds in a landscape. The delineation process
is subjective: two modellers are likely to generate different catchment
descriptions, which contributes yet another dimension to the issue of
equifinality. 
Clearly, there is scope for research to further develop the understanding of
the consequences of the HRU/GRU strategies and alternative hybrid
approaches. Does the routing present in the HRU approach realistically
capture the flux of water in the watershed? Does this perform significantly
better that a GRU approach at some space and time scales? For example,
would the GRU approach be suitable for annual fluxes and the HRU for
finer time steps? Are there alternative approaches where the routing can be
better captured within a GRU type of approach? Can the definitions of
HRUs be made to be more objective, or even automated?

Processes and parameterizations

In principle, gridded models can be transferred in time or space if they
incorporate the appropriate physics. The predominant challenge with
complex models is that their numerical solution schemes can be costly in
terms of computer processing time. To address physical processes that are
unresolved at the model scale, processes are parameterized; however,
highly parameterized models can be sensitive to errors in input variables.
Simpler highly parameterized process-based models require fewer
computer resources than detailed processed models; however, robust
parameterizations of the processes that facilitate the transferability of
parameter sets must be developed. A globally applicable model may not be
appropriate. Instead, the development of modular modelling platforms such
as Cold Regions Hydrological Model (Pomeroy et al. 2007)) and Raven
(Craig et al., 2011) may be a more appropriate and useful approach. Such
models would incorporate only those processes and representations that are
relevant and limited by available data sources. In such a modelling
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environment the onus is on the hydrologist to understand the dominant
processes in the target catchment to ensure they are incorporated in the
chosen model.

Calibration or parameter estimation will likely always be required in
modelling applications, either to estimate parameters in process
representations or to correct biases in fields of driving variables. The
ultimate objective is to develop parameterizations that are transferable in
time and space and that do not require site-specific calibration. This would
be consistent with the trend for modellers to move away from using
streamflow as the sole calibration target and incorporating additional
variables such as glacier mass balance (e.g., Konz and Seibert, 2010;
Schaefli and Huss, 2011) and other “soft” data (Seibert and McDonnell,
2002). Bias-correcting meteorological fields derived from products such as
NARR or MERRA could be approached by using them to drive a process-
based snow model and forcing it to reproduce snowcover patterns as
derived, e.g. from the MODIS products.

Research opportunities in process-based modelling are extensive. Robust
and consistent methods for assessing the suitability of physically based
models or parameterizations in model performance for site-specific field
studies and for supporting scaling will continue to be a focus (Wagener and
Wheater, 2006). Research tools are needed to support communicating
uncertainty. New approaches for allocating model resources and supporting
appropriate decision making in model implementation (i.e. should the
process be in the model physics or simply a parameterization) are needed to
guide which approach is more suitable.

Scale considerations

Because data products are available over many differing spatial resolutions,
converting them to a common scale requires degrading high resolution data
to a coarser scale and/or interpolating coarser resolution products to higher
resolutions. Degrading the resolution of a more finely resolved product to a
coarser scale destroys information. Interpolation of coarse-scale data carries
the risk of introducing artifacts of the interpolation procedure and may not
accurately represent the true spatial pattern. Research that assesses the trade-
offs in these approaches and their influence on model performance is needed
as either approach may introduce additional uncertainties and bias.
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Assessment of model output

Assessment of the uncertainty of model results is essential for understanding
the applicability of the output to water management and the risks associated
with making decisions with uncertain data (Pappenberger and Beven, 2006).
An assessment of the potential to reduce uncertainty is also valuable in
determining where additional resources may be best spent.

Practitioners and researchers would be well served by adopting a common
framework for model assessment. As seen previously, modellers and analysts
make assumptions, parameterize, and simplify as a matter of course, often
without explicit explanation or justification. A standard framework that allows
common interpretation of these decisions would be widely useful. Since
everyone must make assumptions, simplifications, and parameterizations, the
uncertainty induced by these simplifications needs to be adequately
communicated. As a hypothetical example, a modeller might argue that, since
glaciers are less than 5% of the given basin’s area, glacier-related processes
are not modelled; this choice might induce an uncertainty of < 5% in the
annual runoff, but can produce a major error in predictions of late summer
discharge, particularly during hot, dry weather. 

Communicating uncertainty is a core issue for predicting in ungauged basins.
Frameworks such as GLUE (Generalized Likelihood Uncertainty Estimation)
(Beven and Freer, 2001) provide guidance for scientists, practitioners, and
decision makers who need both tools and training that support their use of this
information. Too often, decision makers fail to interpret uncertainty in terms
of confidence intervals; rather they perceive it as lack of knowledge. At the
same time, a single number may be perceived as “better” than numbers with
confidence intervals or as the “right” answer. Client expectations may result
in practitioners simplifying results (e.g. removing confidence intervals)
resulting in information loss.

Research basins

Given that many areas are generally poorly monitored, research basins will be
critical in the development and testing of simplified but robust representations
of processes, for determining the appropriate scales for process representation,
and for testing alternative approaches to the definition of HRU/GRUs. With
increasing pressures on hydrometric network managers to reduce costs, it is
crucial to maintain the data-rich infrastructure at research sites, especially at
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sites with relatively long periods of record, where the effects of climatic
variability can be separated from other impacts and can be more readily
assessed. Reference hydrological networks play a key role in this (Whitfield
et al., 2012; Burn et al., 2012).

Putting PUB advances into wide practice will require research to progress
on a number of academic fronts, especially (1) generation of spatial fields of
meteorological variables, (2) characterization of catchments and delineation
of HRUs so as to capture the range of hydrological behaviour in a
parsimonious yet robust manner, and (3) development of approaches for
transferring information about processes and parameterizations from data-
rich research catchments to ungauged catchments. Researchers should
engage in a series of PUB emulation exercises to demonstrate the
improvement in predictive capability asociated with newly developed
modelling approaches. The following basic steps incorporate the scientific
principles associated with predicting flows in ungauged basins, but also
recognize the limitations that exist in practice: 

• basic process understanding 
• data assessment and compilation
• model selection based on processes and data
• model parameterization
• assessment of model output

An important consideration is that not all applications require or provide the
same level of accuracy; accordingly, there may be a demand for a range of
modelling approaches to suit the needs and data availability in specific
applications. Researchers will need to continue to engage with practitioners
in workshops like “Putting PUB into Practice” to gain a better understanding
of their needs. 

Dealing with change 

Climate change is generally being approached by variability and trend studies
of climate and streamflow, but largely tied to temperature and precipitation.
Data from research basins and reference hydrological networks can be used
to define ‘natural’ types and their attributes. Presently, we are not in a
position to provide long term projections without making large simplifying
assumptions such as lack of landscape or vegetative change. Projecting future
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streamflows is a complex process and there are multiple GCMs, RCMs, and
many equally likely future scenarios that could be considered. Hydrology
models (statistical, conceptual, and physical) could all be driven by climate
model outputs, possibly downscaled (dynamically or statistically), for any
number of possible cases. Research in data-rich areas will need to provide
insight to the direction and scale of potential changes in order for there to be
confidence in the outcomes. PUB in data-sparse and data-poor situations will
need to develop much further before the methods can be considered adequate
for projections that address changes in climate, land use, and vegetation. 

20.9 KEY OPPORTUNITIES

Standardized protocols

The hydrological community must recognize and adopt standard protocols or
best management practices for both data collection and data extrapolation
across all regions for hydrological prediction. This would help reduce
uncertainty in decision making and data transferability during the tool
evaluation process. For instance, the Canadian oil and gas industry is
currently developing standard protocols for stream gauging in collaboration
with the British Columbia Ministry of the Environment and the Water Survey
of Canada. This example of co-operation illustrates the objective to ensure
inter-industry comparability in order to facilitate the more widespread use of
data already being collected and, thereby, assist the development of more
robust models of water availability for management and allocation purposes.
These types of activities help improve the appetite for non-hydrometric
service data and encourage a two-way transfer of information on how to
optimize data collection. In addition, inherent benefits of this multi-agency
approach are improved data transferability and reduced redundancy among
different groups. Instead, time and finances can be applied to other
knowledge gaps. Important results of the above, of course, are more cost-
effective data collection and hydrological model development protocols.

Protocol for a catchment function diagnostic

When faced with a diversity of choices and an even greater range of potential
outcomes, a tool of increasing popularity is the decision tree (Bosch et al.,
1996). This is a simple decision support tool that uses a tree-like graph or
model of decisions and their possible outcomes, and it can help in the design
of a strategy most likely to aid in meeting a specific goal. The decision tree
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could be used to identify the most suitable approach to hydrological prediction
given the parameters of a particular situation. Figure 20.1 illustrates a possible
decision tree based on the methods summarized above, that includes the
spatial and temporal nature of the question being posed, the level of acceptable
uncertainty, and the time and financial constraints for use by hydrological
practitioners. This was envisaged as a decision tree approach that would use
available information, assess process understanding, direct data assessment
and compilation, and guide model selection and model parameterization.
Basic process understanding could be determined from available information
on climate, topography, land use, regionally generated streamflow predictions,
and experience in data-rich contexts. This information could be incorporated
in the decision tree to identify and differentiate processes and their linkages,
and would be needed to develop tools, guidelines, and thresholds. The process
must not be a single entry key; rather it should [1] identify the main processes
and pathways including groundwater and landscape storages, [2] identify the
landforms and topography, the existence and extent of wetlands and flood
plains, slopes, and drainages, [3] identify the vegetation, soils, including
interception and evaporation, and [4] address the heterogeneity of the mosaic.
Ultimately, any classification needs to be accessible based upon the available
information.
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A well-constructed decision tree available to both academics and
practitioners, indicating both traditional and ground-breaking methodologies,
may provide insight into which methods could and should be implemented.
We recommend that a decision tree for prediction in ungauged basins should
be constructed and made publicly available as it would be a valuable means
of both knowledge and technology transfer, and it would serve as a
‘handbook on a page’. 

Better outreach

Developing tools like decision trees or comprehensive handbooks (e.g. Pike
et al., 2010) depends on good and ongoing communication between
researchers and practicing hydrologists. Thematic meetings and workshops
have proven to be very successful for information and idea exchange in
Canada (Spence et al. 2005, Spence et al., 2008) as they bring together a
diversity of attendees, increase awareness and conversation, and develop
trust, the value of which cannot be underestimated.
In most data-sparse and data-poor regions, academics, practitioners, and
governments must work together in data collection, research, and the
development of predictive tools. Unfortunately, a good communication
strategy to advertise the availability of new data or technologies to the
practicing water resource community is generally lacking. A website that
provides a conduit for research and development notes would be widely
valuable. Such a website would include required metadata that would
accompany the tools and would include details of the technical workings
and the broader relevance for hydrological prediction. This would assist
both technicians and managers in appreciating the value of the information.
Active and up-to-date, online resources used as tools for the dissemination
of valuable information to the hydrological community would support the
traditional peer-reviewed literature medium for research results by acting as
the key outlet for up-to-date development results. Furthermore, on-line
sources support sustainable linkages among academia, government,
practitioners, and the public, each of whom have a stake in the development
and understanding of water resources in ungauged remote areas. Hosting of
such a site presents several challenges as there is no single entity that has
that mandate. A shared approach where individual agencies share their
information through a single portal may be a workable system. Most likely,
success would rely on an open source approach.
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Open source solutions

Much of the development of improved tools to date has been top-down, with
the concerns of users often an afterthought. To make the uptake of improved
tools successful, not only do the tools need to be useful to practitioners but
practitioners need to be informed about the existence of new tools, the
nature of the improvements, and that the resulting tools implement these
changes. An advantage of open source methodologies is that they potentially
increase the number of people developing the project and those testing the
code, contributing to improvements in development speed and code
reliability. The best way to ensure the engagement of users is to involve
them in the development of tools, preferably from an early stage in the
development. In open source projects, this can be done by soliciting the
participation of end users at the beginning and throughout the project. In all
cases there needs to be extensive collaboration between researchers and end
users. Stakeholders can be involved in research projects and in the training
of students. While financial contributions from the users give them a stake
in a project, it is critical to keep expectations clear.

One opportunity is to develop an open-access database of standardized
watershed variables which is routinely updated. Standardized open source
clustering of the database records would be updated and ‘published’ on a
timely basis perhaps based upon growth in the size of the database. At each
iteration, new records would be tested to see if they “fit” the classification
(high similarity); if they do not (low similarity), a rule based new generation
would be generated, reviewed, and released as a new version by a peer team.
Each new version would require a description to be published in a public
forum such as a peer-reviewed international journal. The editorial board of
the journal would need to be approached to create an ongoing relationship.
It is expected that the classification and the diagnostic should co-evolve, but
be done separately.

Since every watershed is unique, the classification needs to simultaneously
deal with the common attributes upon which similar hydrological landscapes
are grouped at a high level while allowing more separation based upon
additional attributes. This should provide a system where the major processes
and timing are captured for any ungauged basin, but with the additional
information available to increase resolution.
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It is recognized that all new tools need to better incorporate user/practitioner
needs. Projects also need to include better communication plans and training of
end users. Practitioners make it clear that the initial adoption of a new
technology has both a risk and a cost; hydrology will be well served if new
developments in the science are incorporated into a limited number of tools. All
developments being implemented for professional practice need to be
accompanied by training which could include webinars, podcasts, and other
forums where the needs of the users, and not the developers, are best addressed.

20.10 CONCLUDING REMARKS

The lack of data with which to inform any type of predictive model, in
combination with the wide diversity of hydrological landscapes, make
prediction in ungauged basins challenging. The PUB Decade has seen the
development of research that has a great potential to advance the practice of
hydrological prediction in ungauged basins, particularly thanks to the
development of gridded hydrometeorological products and research
activities in relatively data-rich research basins. Support for research basins
needs to continue as these basins provide the testing grounds for new
hypotheses, statistical, conceptual, and deterministic models, and reanalysis
tools. By clearly determining the scales at which the data and information
produced would be applicable, possibly through a basin classification
system, the value of these sites would be enhanced. Practitioners and
managers also need such a classification system and other tools designed to
enhance the development of transferable data, indices, parameters, and
indicators. It is recommended that standardized and generalized
physiographic information be collected using the same set of tools that are
widely used by practicing hydrologists. The classification system should
link landscape attributes to these more intensive and detailed measurements.
As predictive tools develop, updated decision trees may prove to be valuable
to practicing hydrologists. Development and maintenance of these types of
tools require ongoing communication and collaboration among all
hydrologists. The existing newsletters, journals, and websites of
professional and learned societies are well suited for the spreading of such
information and would complement the traditional peer-reviewed literature
conduit for information dissemination. An open source approach to the
classification system and the diagnostic protocol is recommended so these
will have widespread application and acceptance.
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20.11 RECOMMENDATIONS AND ISSUES

1. Address the need to maintain continuity. What would be the
appropriate mechanism for validating new methods, and bringing
them into practice? It is not obvious who should be responsible for
the ongoing need to convert research into practice. New approaches
and improved methods deliberately result from research; moving
such new developments into professional practice is an apparent gap
in our community, although at different times government,
practitioners, and software developers have played important roles.
Some guidance with respect to this has been provided above.

2. Address the need for interfaces to complex datasets. How can complex
datasets be made widely accessible to practitioners? Researchers
commonly use a diverse mixture of complex datasets from remote
sensing, climate models, and reanalysis products. While these datasets
are readily accessible, they are not readily put into practice, and if they
are used in practice, the access methodology is not always clear. 

3. Address the need for open source approaches. Are we getting the
right answers for the right reasons? With increasing complexity of
models and analysis there is a responsibility for transparency. The
community needs to be certain that models and methods properly
capture the science, the uncertainty, and the quality of inputs. This is
particularly true for regulatory agencies that make key decisions
based upon outputs from models and analysis.

4. Address the need for common operating platforms. Can the
community adopt a common framework that would improve upon
the current situation? With the increasing diversity of models and
tools there is a growing risk that the users will use tools that they
have available, that they are familiar with, or that cost less, rather
than ones where the science matches the information needs. The
growing gap needs to be made much smaller. Modelling
environments such as Green Kenue have demonstrated the value of
creating a common framework that supports model development,
hydrological modelling, and the display of results. Green Kenue was
recently made freely available with the intent of it being used in
training students in the practice of hydrological modelling.
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5. Address the need for better outreach. Is the community taking the
correct actions to support the transfer of science into practice?
Adopting an open source approach with a generalized classification
and diagnostic scheme are key steps; making training and support
readily available to practitioners will also be important. Tools that
are unsupported or left up to the users to discover and apply will be
unsuccessful. Practitioners often prefer tools where support is
available on demand, or just in time, rather than “do it yourself”.

The legacy of the PUB decade includes significant advances in the
understanding of hydrological processes and development and testing, in
research settings, of revised or new methods for PUB. The challenge remains
to address the need to adopt standards and globally generalized approaches
for practitioners to make predictions in ungauged basins; the participants in
the workshop portion of this meeting have suggested approaches that will
address this situation.
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21.1 ABSTRACT

This chapter discusses three tasks that are considered necessary to advance
improvements in prediction in ungauged basins in applied situations. First,
incorporation of new hydrological process understanding into predictive
models needs to continue. This should enable models to predict more than
the traditional end point; streamflow, and expand into others such as storage
in the snowpack and subsurface. It will also reduce uncertainty when dealing
with non-stationarity. Second, methods need to be introduced that help
constrain, rather than calibrate, model parameters. Traditional calibration
could be used to solve for these parameters; but there are reasons to avoid
this approach, non-stationarity being only one. Constraining parameters is
useful as it helps locate uncertainty, and how it could be addressed.
Information for constraining parameters can come from a wealth of sources,
including existing hydrological indices, independent measurements from
remote sensing, or research catchments. Third, work must continue to
encourage the adoption and implementation of robust tools by practicing
hydrologists. Unfamiliarity and adhering to accepted standards of practice
are two reasons why practitioners are sometimes hesitant to adopt new
approaches. Time limitations and a lack of easy access to new tools are
significant logistical impediments to adoption as well. Some countries have
addressed these problems with training courses as a means of technology
and knowledge transfer. Such collaborative efforts are crucial to improve
water management and prediction systems.
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21.2 RÉSUMÉ

Le présent chapitre traite de trois tâches jugées nécessaires pour l’avancement
des initiatives d’amélioration de la prévision dans les bassins non jaugés dans
des situations appliquées. Tout d’abord, l’intégration de la compréhension des
nouveaux processus hydrologiques aux modèles de prévision doit se
poursuivre. Cela devrait permettre aux modèles de prédire davantage que
l’écoulement fluvial, point terminal traditionnel, et d’étendre la capacité des
modèles à d’autres prévisions, notamment l’emmagasinement de l’eau dans le
manteau neigeux et la subsurface. Cela réduira aussi l’incertitude lorsqu’il faut
composer avec la non-stationnarité. En deuxième lieu, des méthodes doivent
être adoptées afin de restreindre, plutôt que d’étalonner, les paramètres du
modèle. Il est possible d’avoir recours à l’étalonnage traditionnel pour la
résolution de ces paramètres. Cependant, il existe des raisons d’éviter cette
approche, la non-stationnarité étant l’une d’elles. La restriction des paramètres
est utile, car elle aide à localiser l’incertitude et elle facilite la manière de
l’aborder. Les données pour la restriction des paramètres peuvent provenir
d’une myriade de sources, entre autres des indices hydrologiques existants, des
mesures indépendantes de la télédétection ou des bassins de recherche.
Troisièmement, le travail doit se poursuivre en vue d’encourager l’adoption et
la mise en œuvre d’outils robustes par les hydrologues en exercice.
L’inexpérience et le fait de devoir adhérer à des normes de pratique acceptées
constituent deux raisons pour lesquelles les professionnels en exercice hésitent
parfois à adopter de nouvelles approches. De plus, les délais fixés et un manque
d’accès simple aux nouveaux outils constituent d’importants obstacles
logistiques à l’adoption. Certains pays se sont attaqués à ces problèmes en
offrant des cours de formation comme moyen de transfert de technologie et de
connaissances. De tels efforts de collaboration sont indispensables à
l’amélioration des systèmes de prévision et de gestion de l’eau.

21.3 INTRODUCTION 

The organizers of the Putting PUB into Practice Workshop of 2011 challenged
the participants to develop innovative answers to the following question: How
can the practice of prediction in ungauged basins be successful in areas where
it is hard to do so, during changing environmental regimes, and when multiple
end points are needed? The solution seems straightforward – build tools
capable of the task - but the implementation is not simple. The content
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presented earlier in this volume summarizes the research and development
efforts specifically presented and discussed at PUB 2011 that can lead towards
building and implementing improved predictive tools. Beyond the scope of
PUB 2011, there have been a large number of published contributions over the
PUB decade, (see Hrachowitz et al., 2013 for examples) that when
implemented will contribute to the practice of prediction in ungauged basins.
At this stage, near the end of the PUB decade, there is still progress to be
made. The discussion at PUB 2011, with its focus on improving prediction by
practicing hydrologists and water resource managers, provided key insight
into where this progress is needed so that society can benefit from the
increased knowledge that came from research conducted during the PUB
decade. Rapid improvements in prediction could now come from a concerted
effort on two sequential fronts; first, ensure that new hydrological process
understanding is incorporated into predictive models; second, ensure
successful application of enhanced predictive models by implementing
methods to constrain parameterization of these new process algorithms as they
are incorporated into the models; however, even if the water resource research
and management communities are successful in achieving these goals, they
may be moot. The full potential of this knowledge, research, and development
will only be ensured by having them adopted and enacted by practicing
hydrologists. Each of these three tasks is addressed in turn. 

21.4 DECREASE THE GAP BETWEEN PROCESS UNDERSTANDING
AND MODEL STRUCTURE 

Deterministic hydrological models are traditionally designed to predict one
end point; streamflow. More needs to be demanded from these models.
Society is no longer only asking about the statistical properties of the quantity
of water in the stream; they are asking much more complicated questions
about water; for example, how might the volume and timing regimes of
streamflow and lake levels change in the future, and how might this affect the
quality of the water? This requires models that properly predict streamflow
by correctly simulating other parts of the hydrological cycle. For the
distribution of water storage or water chemistry, for instance, to be correctly
simulated, there needs to be proper representation of runoff processes and
pathways. In order to have confidence that models are correctly simulating
all aspects of the water cycle and runoff pathways, they should perform well
at not just the catchment outlet, but also at sub-catchment scales. 
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Dornes et al. (this volume) provide an example to model developers and users
of how a distributed model can be structured to ensure important components
of the water cycle are properly simulated. The authors applied knowledge of
how snowmelt energy is distributed across a mountainous subarctic watershed
and structured how energy was distributed in the model accordingly. As a
result, simulations of both snow ablation and streamflow were improved from
when aggregated approaches were used. New algorithms were not necessarily
required, but wise application of existing knowledge and tools was. The lesson
for practitioners is to apply models appropriate to the level of landscape
complexity and true to the predominant processes. 
Via hydrometric (Tromp van Meerveld and McDonnell, 2006) and
hydrochemical techniques (Tetzlaff et al., 2007), one of the major
contributions from the research community to PUB was identifying that
previous theories of runoff generation and pathways are not necessarily as
widely applicable as expected. This was a problematic finding, as these
theories have provided the foundation for the algorithms in many commonly
used numerical models. New algorithms have proved successful in research
models (Soulsby et al., 2006), but this type of information has not generally
made its way into models commonly used by practitioners. 
There is a firm belief in the research community now that models must
encapsulate the proper processes and fluxes of water within the catchment
and not just from the catchment. This is because of growing understanding
of the role of sub-catchment units in complex landscapes in catchment
runoff generation (Spence and Woo, 2006; Jencso et al., 2009). Because of
these developments during the PUB decade that show that sub-catchment
storage states and thresholds are crucial to runoff generation, attendees at
PUB 2011 encouraged the development of models that can predict both
hydrologic state and storage (e.g. Seyfried, et al., 2009). This would be
complementary to the development of research models that can properly
simulate how storage is converted to discharge via simulating the correct
source areas, flowpaths, and residence times (Soulsby et al., 2006). 
Developing robust model structures is a means to an end, the latter being
improved prediction in ungauged basins and better information for decision
makers; however, building such models should also be an end unto itself.
Doing so is necessary to ensure the continued relevance of predictive
models, in a post-stationary world (Milly et al., 2008). The issue with non-
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stationarity is pervasive. Post (this volume) implies that non-stationarity
could result in a change in predominant hydrological processes in a given
region. This would imply that a more adaptive (i.e. more endpoints, less
calibration) model structure is required for predictions to be relevant into the
future. Furthermore, physically lumped catchment-scale signatures and
diagnostics (Wagener et al., 2007), and the empirical relationships that come
from them, are also vulnerable to non-stationarity. Hydrologists leading
research into these types of “top-down” models need to consider the role of
non-stationarity, so as to build resiliency into these types of predictive tools.
Practicing hydrologists also need to consider this and implement best
practices to ensure the tools they are using remain resilient before being
used to generate information used by decision makers. 

21.5 CONSTRAINING UNCERTAIN MODEL INPUTS AND OUTPUTS

Perhaps one of the major stumbling blocks to improving confidence in new
algorithms and schemes in hydrological models is the reliance on traditional
model calibration and validation approaches. New algorithms require new
parameters, information on which is unlikely to have been collected.
Traditional calibration could be used to solve for these parameters, but there
are two reasons to avoid this approach. First, calibration is not suitable for
ungauged basins because of the absence of streamflow data with which to
calibrate models. Furthermore, one of the key tenets of the PUB initiative
was to progress away from calibration (Sivapalan et al., 2003) and build tools
that did not need observed hydrological response data. A framework has been
proposed in South Africa that promotes a focus on constraining model
parameters within a range defined with as much information as is available
(Kapangaziwiri et al., 2012). In a well-gauged and measured catchment
model, parameters may be constrained well because of the generous amount
of information and there may be a very narrow band of uncertainty. In poorly
or ungauged catchments, the uncertainty band would be much greater and
depend on the availability of information used to constrain parameters.
Developing a suitable suite of constraints, therefore, represents an equally
critical step in the process as defining parameters and their distributions. As
such, understanding parameter distributions and how to constrain the possible
range for an ungauged basin is also a field of research that has enormous
potential to be useful in practice (Seibert and McDonnell, 2002).
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The exercise of constraining parameters within specific ranges is one of using
information from data-rich situations and transferring them to data-poor
situations and could include a wide variety of different approaches including:

• Applying hydrological indices based on some established approaches
that have proven valuable in the region of interest (e.g. SCS curve
numbers estimated from regional soils and land use data).

• Assimilating independent measurements of hydrological state
variables (e.g. storage from GRACE (e.g. Ramillien et al., 2008))
as well as stream flow data to condition model outputs.

• Evaluating how regional catchment response (e.g., mean runoff
ratio, residence time) varies with catchment properties such as soils,
geology, land cover and use, and topography. This would help
provide information on expected parameter values for different
catchment classes (Yadav et al., 2007).

• Using focused, short-term field campaigns to confirm or constrain
and reduce the uncertainty in some of the model inputs or outputs
(Pomeroy et al., 2005; Hughes et al., 2013).

Figure 22.1 outlines the steps in an ensemble approach to assessing
uncertainty in model parameters. There are two options to follow after the
initial uncertainty ensemble outputs from the model are assessed. The first
is simply to reject non-behavioural ensemble members, while the second is
to feed information back to the parameter estimation process and try to
reduce the initial uncertainty in the parameter values. This feedback loop
may be useful to identify critical processes or parameters that generate most
of the output uncertainty (sensitivity analysis), and this represents an
approach that uses model outputs to evaluate conceptual process
understanding (Beven, 2012). The feedback loop may also be used to
identify parameter redundancy and contribute to more parsimonious models
in future applications. Alternatively, the feedback loop may also help to
identify critical deficiencies in the structure of a specific model.

Research basins provide a wealth of parameter information that can be used
for model applications; however, end-members and gradients within
individual and networks of research basins need to be captured in order for
the spectrum of relevant hydrological processes and parameters to be
sampled. There is a huge body of literature on the network design of
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sampling sites in stream gauging networks (e.g., Langbein, 1954; Dawdy,
1979; Moss, 1979), but there has been very little development of methods
with which to ensure research basins are representative and fit for purpose.
Process level classification schemes from Winter (2001) and Buttle (2006)
could be used to evaluate research basin representativeness. Because
catchments are selected as intense research sites for logistic reasons as much
as anything else, this could be crucial work. 

Nonetheless, measurements in research catchments should and will continue to
include those necessary to research hydrological processes and characterize
both regional hydrological and physiographic parameters. Sound management
of these sites, however, should include scale appropriate measurements with
tools that facilitate transferring this information to ungauged basins.
Furthermore, research hydrologists should strive to develop predictive
techniques that will still perform well when driven with regionally available
data. This includes considering the type, scale, and resolution of data that exists
outside the research catchment. Sivapalan et al. (2005) and Wagener et al.
(2007) promote the use of diagnostics of hydrological behaviour, catchment
function, and hydrological signatures because these emerge at larger scales. 
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Traditional signatures used to estimate ungauged basin behaviour and
hydrological regimes use climate, topography, vegetation, and geological
characteristics. Wagener et al. (2007), Kuchment and Gelfan (2005), and
Woods (2003, 2009) provide excellent reviews of similarity indices that
encapsulate how catchments function. In light of new research, McNamara
et al. (2011) and Spence (2010) have suggested that diagnostics should
include those measures that characterize storage mechanisms, hydrological
connectivity, and controls on threshold properties. This research is relatively
young and the catchment diagnostics that will prove successful are not fully
known or tested. A key first step could be catchment classification and
mapping as a means to quickly identify the most important controls on water
fluxes (McDonnell and Woods, 2004). Therefore, coordinated efforts to map
regional catchment function diagnostics using measurement tools already
adopted by practicing hydrologists would be a useful exercise. The benefits
of mapping catchment function diagnostics in ungauged basins would be
twofold. First, a broad scale spatial dataset could encourage testing by
researchers of the usefulness of these diagnostics for prediction. Second,
using established measurements could encourage adoption of the new
diagnostics by practicing hydrologists. 

21.6 ADOPTION OF NEW APPROACHES BY PRACTITIONERS

Unfamiliarity and adhering to accepted standards of practice are two reasons
why practitioners are sometimes hesitant to adopt new approaches. Time
limitations and a lack of easy access to new tools are significant logistical
impediments to adoption as well. There are current models and new data
sources (e.g., satellite rainfall or evapotranspiration) for data-scarce regions
that are an important contribution from the PUB decade to the scientific
literature, but evidence of their successful use in practice is relatively scarce
to date. Demonstrating that uncertainty approaches are possible, practical
and essential (Pappenberger and Beven, 2006) and communicating how to
manage uncertainty to practicing hydrologists and water resources managers
are essential components of effectively moving these models and data
sources into practice. The reluctance of some practitioners to adopt new
approaches or data sources is a shared challenge which needs to be
addressed by all members of the hydrological community. It is therefore the
responsibility of the PUB science community to demonstrate to the
practitioners that new approaches are scientifically sound, can be applied in
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practice, and should result in more informed water resources management
decisions being made. Researchers and practitioners could test a variety of
old and new techniques in collaborative exercises, within the uncertainty
framework in Figure 22.1, to demonstrate the advantages or disadvantages
of new tools and data sources developed during the PUB decade.
Model structure selection is often ad hoc because there is often no guidance
in data-poor and sparse regions (McDonnell and Woods, 2004). Research on
how to objectively select appropriate model structures for ungauged
catchments remains a challenging research problem in hydrology (McMillan
et al, 2011). Sound catchment classification and mapping would contribute
much to the availability of spatial information on catchment diagnostics
useful for selecting the most appropriate predictive tools. Working in snow-
dominated environments, Clark et al. (2011) provide an example of using
research to guide the selection of model structure at varying spatial scales.
This type of information could assist in the application of decision trees
(Whitfield et al., this volume). It would reduce uncertainty around choices
of the most suitable model structure given a particular ungauged basin and
the financial and time limitations within which the practitioner must operate.
This would provide the practitioner with some insight into how useful
different model structures are in particular landscapes. 
Some countries have had particular success with training courses as a means
of technology and knowledge transfer. Short, intense courses can expose
early and mid-level career hydrologists to recent research and new data,
theories, models, and techniques. Courses can focus on physical principles,
field instrumentation, model application, and data sources. Courses on
hydrological principles provide participants with information on relevant
hydrological processes, very useful when selecting appropriate tools for
specific landscapes. Field courses teach participants established and new
ways to obtain data and information; for example, the rise in popularity of
acoustic velocity measurements or the introduction of field deployable water
isotope analyzers can provide data and information previously unavailable.
Modelling courses familiarize students with new models and algorithms
which is an important element in the uptake of new technologies. There are
new data, especially gridded meteorological data being made available, but
the practitioner needs to be made aware of their existence. A good course on
models and data can provide guidance for which tasks the tool or data source
are appropriate. These types of courses have been successful in New
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Zealand (http://www.niwa.co.nz/education-and-training/training-courses)
and Canada (www.cwra.org) in recent years. Whatever the focus of an
individual course, communication via courses is a long-term generational
approach to the adoption of new methodologies.

21.7 CONCLUDING REMARKS

There were certainly many advances developed during the PUB decade that
can be easily applied in practice with relatively small changes to models
used currently by practitioners. There are many more contributions that have
the potential to improve the practical use of hydrological models. Realizing
this potential requires further work to move the scientific developments
from the research domain into the practical domain. It is likely that the
initiative to achieve this will come from small victories among those
practitioners wishing to expand their horizons and members of the PUB
research community who are interested in seeing their scientific
developments applied; however, prediction becomes increasingly difficult
with non-stationarity in hydroclimatic regimes, and the associated risk to
society rises accordingly. In order to ensure societies are resilient to water
related stress, it is becoming imperative that all researchers, practitioners,
and decision makers strive to work together to improve our water
management and prediction systems.
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